Rad229 - MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves

dbe@stanford.edu -or- bah@stanford.edu

Learning Objectives

- Describe how a spin-echo forms using EPG
- Explain and draw phase coherence diagrams
- Describe how a stimulated echo forms using EPG
- Understand how to use Matlab or Python representations of EPG

Review: Phase Graph "States" (Flow Chart)

- State Matrix
- RF Mixes
- Gradients Shift
- T₁, T₂ Attenuate*
- Diffusion: Increasing Attenuation with n

$$Q = \begin{bmatrix} F_0^+ & F_1^+ & F_2^+ & \cdots & F_N^+ \\ F_0^{+*} & F_1^- & F_2^- & \cdots & F_N^- \\ Z_0 & Z_1 & Z_2 & \cdots & Z_N \end{bmatrix}$$

Example 1: Ideal Spin Echo Train

 What states will we need to represent the spins with ideal 180° pulses?

$$R_{x}(180^{\circ}) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Example 1: Ideal Spin Echo Train

Over TE/2: E_1 =0.95 E_2 = 0.90

Rad229 Lec-04C Slide-6

Coherence Pathways: Spin Echo

- Diagram shows non-zero states and evolution of states
- Perfect 180° pulses keep spins in low-order states

Spin Echo Example - Ideal 180° Pulses

- Never higher order than n=1
- Coefficients during gradient not really defined - just illustrating
- Relaxation results in transverse signal decay
- Z₀ has some relaxation, but flips
- Z_I only has signal during 180° pulses
- Observed Signal is F+0 (always!)

Example 2: Non-180° Spin Echo

- Ideal spin echo train gives simple RF rotations
- Now assume refocusing flip angle of 130°
- Compare RF rotations:

$$\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
0.18 & 0.82 & -0.77i \\
0.82 & 0.18 & 0.77i \\
0.38i & 0.38i & -0.64
\end{bmatrix}$$

- Positive F_n^+ states remain (from F_n^+) because magnetization is not perfectly reversed, generating higher order states
- Many more coherence pathways (see next slide…)

Coherences: Non-180° Spin Echo

Rad229 Lec-04C Slide-10

Spin-Echo Example - 130° Pulses

- Magnetization builds up in higher-order states
- Does not contribute to spin-echo much

- 90° pulses
- Unit gradients
- Track using epg_show()
- Post excitation, only F^+_{θ}

After gradient:

$$F^{+}_{0}>>> F^{+}_{1}$$

After 2nd RF:

$$F^+_1 >>> F^+_{I}, F^-_{I}, Z_1$$

After gradient:

$$F^+{}_1>>> F^+{}_2$$

 $F_{I} >>> F_{0}$ (spin echo)

Z₁ unchanged

After another gradient:

$$F^{+}_{2} >>> F^{+}_{3}$$

 $F^{+}_{0} >>> F^{+}_{1}$

Z₁ unchanged

After another gradient:

$$F^{+}_{3}>>> F^{+}_{4}$$
 $F^{+}_{1}>>> F^{+}_{2}$
Z₁ unchanged

After another RF:

$$Z_1 >>> F^+_{1}, F^-_{1}$$

others split too

Another gradient:

$$F_{l} >>> F_{0}$$
 (Stimulated echo)

Example 4: Stimulated Echo Sequence

- We will follow this sequence through time
- Show which states are populated at each point

Example 4: General Stimulated Echo Sequence

- Prior to the first pulse, all spins lie along Mz
- This is $\mathbb{Z}_0=1$

Stimulated Echo: Excitation: F+0

- After a 60° pulse, transverse spins are aligned along M_y (F^+_0 = sin60°)
- One half (cos60°) of the magnetization is still represented by Z₀

*Note that we show the "voxel dimension" along different axis for Z and F states

One Gradient Cycle

- The gradient "twists" the spins represented by $F^{+}{}_{\theta}$
- We call this state F_{I} , where the 1 indicates one cycle of phase (F_{I} =0.86)
- The spins represented by \mathbb{Z}_0 are unaffected

Another Excitation (60°)

- The \mathbb{Z}_0 magnetization is again split to F^+_0 and \mathbb{Z}_0
- The F_{l} magnetization is split three ways, to F_{l} , F_{l} (reverse twisted) and Z_{l}

Another Gradient Cycle

- The F_{-1} state is refocused to F_{-0} or F_{-0}
- The F^+_0 and F^+_1 states become F^+_1 and F^+_2
- The Z₀ states are all unaffected
- The process continues...!

Example 4: Stimulated Echo Coherence Pathways

The stimulated echo sequence coherence diagram is shown below Compare with F and Z states on prior slide (location of arrow)

Matlab Formulations

EPG simulations can be easily built-up using modular functions - class GitHub

Simple Transition functions:

epg_RF.m Applies RF to Q matrix

epg_grad.m Applies gradient to Q matrix

epg_grelax.m Gradient, relaxation and diffusion

Transformation to/from $(M_{x_i}M_{y_i}M_z)$:

epg_spins2FZ.m Convert M vectors to F,Z state matrix Q

epg_FZ2spins.m Convert F,Z state matrix Q to M vectors

Stimulated-Echo Example

- Simulate 3 Steps: RF, gradient and relaxation
- Sample Matlab code:

```
function [S,Q] = epg_stim(flips)
Q = [0 0 1]';
for k=1:length(flips)
Q = epg_rf(Q,flips(k)*pi/180,pi/2);
Q = epg_grelax(Q,1,.2,0,1,0,1);
end;
S = Q(1,1);
%
```

(See epg_stim.m)

```
% Z_0=1 (Equilibrium)
```

```
% RF pulse
% Gradient/Relax
```

% Signal from F0

Stimulated Echo Example (Cont)

Calculate signal vs flip angle: fplot(epg_stim([x x x],[0,120])

Diffusion

Diffusion weighting can easily be applied

-Details in Weigel et al. J Magn Reson 2010; 205:276-285

Attenuation greater with n for both F_n and Z_n

Requires physical " 2π " gradient twist k (m- $^{-1}$)

During gradient, $\Delta k = k$, otherwise $\Delta k = 0$

$$b_n(k, \Delta k) = \left[\left(nk + \frac{\Delta k}{2} \right)^2 + \left(\frac{\Delta k^2}{12} \right) \right] T$$

$$F_n' = F_n e^{-b_n(k,\Delta k)D}$$

$$Z_n' = Z_n e^{-b_n(k,\mathbf{0})D}$$

Summary of Sequence Examples

- 90° and 180° RF pulses "swap" states
- Generally RF pulses "mix" states of order n
- Gradient pulses transition F_n^+ to F_{n+p}^+ and F_n^+ to F_{n-p}^+
- Coherence diagrams show progression through F and/or Z states to echo formation
- Signal calculations actually quantify the population of each state
- Matlab:
 - -epg_grelax.m and epg_rf.m simulate many things
 - -many epg_*.m examples and functions

How are EPGs used for common sequence calculations?

Rad229 - MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves

dbe@stanford.edu -or- bah@stanford.edu