Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-8B — Spin-Echo Sequences Practical Spin-Echo-Train Signals

Brian Hargreaves bah@stanford.edu

Rad229 - MRI Signals and Sequences

Learning Objectives

- Draw waveforms for a practical spin-echo-train sequence
- Explain the function of crusher gradients
- Explain the CPMG condition and why it is important
- Calculate the signal for reduced and variable refocusing angles

Spin-Echo Trains: Practical Concepts

- Reduced Refocusing
- Short Echo Spacings
- Crusher Gradients
- CPMG
- Stabilization
- Eddy-current correction

Question 1

Rad229 Lec-08B Slide-5

Spin Echo Formation: Reduced Refocusing Angle (120°)

Spin Echo Train Simulation: epg_cpmg.m

Simulate

1. 90° excitation

Repeat:

- 2. Relaxation and crusher gradient
- 3. Refocusing pulse
- 4. Relaxation and crusher gradient
- 5. Signal at spin echo

Vary refocusing angle and/or phase...

	Å	
Í	22	
Ĺ	33	
ľ		

Coherence Pathways: 180° Spin Echo

Coherences: Non-180° Spin Echo

Rad229 Lec-04C Slide-9

Effect of Crusher Pulses - Eliminate Pathways

Rad229 Lec-08B Slide-10

Question 2

Rad229 Lec-08B Slide-11

CPMG Sequences

- Most spin-echo train sequences use CPMG
- CPMG = Carr Purcell Meiboom Gill
 - 90_x , 180_y , 180_y , 180_y , ...
 - 90_x , -180_x , 180_x , -180_x , ... (alternate ref. frame)
 - - +90°, +270°, +90°
- Consider the "dephased" disc:
 - If the refocusing angle is lower, CPMG "corrects"

Example: CPMG

In CPMG, the F⁺₁ and Z₁ states add constructively at the refocusing pulse to F⁻₁

Example: Non-CPMG

Slide-14

Intuition: Stabilization Pulse

- Usually use reduced refocusing angles -90_x , -120_x , 120_x , -120_x , ...
- Consider the "on-resonant" spins
 - -90_x , -150_x , 120_x , -120_x , ...

Example: CPMG (Same as before!)

In CPMG, the F⁺₁ and Z₁ states add constructively at the refocusing pulse to F⁻₁

Slide-16

Example: CPMG (with Stabilization)

\$

Slide-17

Spin Echo Train Results

• Varying α_{ϕ} refocusing pulses, 10ms echo spacing

Rad229 Lec-08B Slide-18

CPMG Cases: Examples

CPMG: Effect of Phase

- Compares $90^{\circ}_{-\pi/2}$ α_{ϕ} for $\phi=[0,\pi]$ and $\alpha=105^{\circ}$
- CPMG ($\phi=0$) shown for reference

Rad229 Lec-08B Slide-20

Modulated Refocusing Angles

- Variable flip-angles with CPMG
- Different schemes to "optimize" signal over echo train
- AUC vs SAR vs flatness vs "extended" exponential

Phase Correction

- Eddy-current variations are a problem
 - Between refocusing pulses eddy currents are the same less problematic
 - $-\,90^\circ\text{--}180^\circ$ eddy currents differ, causing loss of the 90° phase difference for CPMG
 - Oscillation over echo train causes ghosting

 Linear corrections by modifying G_x and G_z areas

Hyperechoes

Hennig 2001

- $-R_z(\beta) R_y(180^{\circ}) R_z(\beta) = R_y(180^{\circ})$
- $-R_{\phi}(\alpha) R_{y}(180^{\circ}) R_{-\phi}(-\alpha) = R_{y}(180^{\circ})$
- The following reduces to $R_{x}(180^{\circ})$,
 - with ϕ defined w.r.t x

 $(\alpha_1, \varphi_1), (\alpha_2, \varphi_2), \dots, (\alpha_N, \varphi_N), (180^{\circ}, 0), (-\alpha_N, -\varphi_N), \dots, (-\alpha_2, -\varphi_2), (-\alpha_1, -\varphi_1)$

Hyperecho Example

Summary

- CPMG: Refocusing pulses "self-correct" 90°_{y} , α_{x} , α_{x} , α_{x} , ... or 90°_{x} , $-\alpha_{x}$, α_{x} , $-\alpha_{x}$, ...
- Stabilization Pulse: First refocusing pulse balances echoes
- Non-CPMG: Signal oscillates and decays quickly
- CPMG allows reduced, variable refocusing angles
- Eddy-current-induced phase can disrupt CPMG
- Hyperechoes enable reversal of reduced-refocusing-angle effects

How are spin-echo sequences related to gradient echo sequences?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu