Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-9A — Gradient-Echo Sequences Balanced-SSFP Dynamics

Brian Hargreaves bah@stanford.edu

Rad229 - MRI Signals and Sequences

Learning Objectives

- Explain geometric derivation of bSSFP dynamics
- Describe characteristics of the bSSFP signal vs frequency
- Explain phase cycling and why it is useful

Short-TR Gradient Echo

- Rapid, efficient 2D/3D imaging
- High-resolution with minimal blurring
- Steady states and equilibrium Pushing a swing (with friction)

Heating a room (with a window open)

Exciting magnetization (with relaxation)

Outline: Gradient Echo Sequences

- Gradient Echo = No spin echo!
- Spoiling Types
- Properties

Balanced Steady-State Free Precession (bSSFP)

Question 1: Balanced SSFP

• What do you think happens here?

Balanced SSFP: Steady State Formation

After many sequence repetitions a steady state forms

Slide-8

Simple Case: No precession

Steady State: No Precession

Off-Resonance: Precession

Increasing Precession

Full Frequency Distribution

Signal Solution - On Resonance

Question 2: Signal levels

RF Nutation and Precession

- RF is balanced by relaxation and precession
- Length is still relatively unchanged over TR
- Ignore relaxation for now...

Schmitt MRM 2006, Zun, ISMRM 2006

Rad229
Lec-09A
Slide-16

Precession and "Effective flip angle"

- $\tan(\alpha/2) = \tan(\beta/2)\cos(\phi/2)$ $(\beta \ge \alpha)$
- Larger precession (ϕ) gives a larger "effective flip," β
- Can replace flip (α) with effective flip (β) for all calculations
- Limiting case (•) where $\beta = 180^{\circ}$

Signal vs Precession/Frequency

bSSFP Dark Bands

- Must limit precession: Short TR
- Limits resolution

Rad229

Phase Cycling

Question 3: Phase Cycling

Combined Acquisitions

Alternating RF

Combined Acquisition

bSSFP Steady-State: Summary

- Ellipsoidal distribution: shape given by T2/T1
- Path depends on flip angle and precession
- Signal very sensitive to resonant frequency
- TrueFISP, FIESTA, Balanced FFE, BASG, True SSFP

What are mathematical descriptions of Balanced SSFP dynamics?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu