Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-11B — Radial and Spiral Sequences Spiral Imaging

Brian Hargreaves bah@stanford.edu

Rad229 - MRI Signals and Sequences

Learning Objectives

- Explain the rationale for spiral imaging
- Describe how a spiral waveform can be designed
- Explain the trade-offs between number of interleaves, trajectory duration and scan time
- Explain how off-resonance and delays impact spiral images
- Explain the steps of a gridding reconstruction

Spiral

- Flexible duration/coverage trade-off
 - Like radial, center-out, TE~0
 - Low first-moments
- Longer readouts maximize acq window
 - Archimedean, TWIRL, WHIRL
 - Variable-density

Rad229 Lec-11B Slide-4

 k_x

 k_v

Archimedean Spiral

- Radius proportional to angle: $k(t) = k_x + ik_y = A \theta(t)$
- Somewhat uniform density, with N interleaves
- Extreme case: single-shot with N=1
- θ increases 2π per turn... what is *A*?

$$k(t) = \frac{N\theta}{2\pi FOV}e^{i\theta}$$

Stopping point:

$$\theta_{max} = \frac{2\pi}{N} k_{max} FOV$$

Challenge is to design $\theta(t)$ to meet constraints

An Archimedean spiral has radius proportional to angle - leading to somewhat uniform sampling

Rad229 Lec-11E

Slide-5

Archimedean Spiral Design

- Begin with spiral equation:
- Differentiate to obtain dk/dt and d^2k/dt^2
- Amplitude limit: $dk/dt < \gamma/2\pi G_{max}$
- Slew limit: $d^2k/dt^2 < \gamma/2\pi S_{max}$

$$k(t) = \frac{N\theta}{2\pi FOV} e^{i\theta}$$

- 1. Approximations for θ(t) (Glover 1999)
 - Consider slew-limited and amplitudelimited regions

2. Solve numerically at each point

- Find all limits, use active limit
- Can include circuit model easily (Meyer, King methods ~ 1995)

Example Spiral Waveforms

Rad229 Lec-11B Slide-7

Spiral Imaging Sequence

Question 1: Spiral Characteristics

Variable-Density Spiral

- Undersample outer k-space
- Vary spacing (1/FOV) as function of $|k/k_{max}|$ or θ
- Increase spacing along trajectory

$$k(t) = \frac{N\theta}{2\pi \text{ FOV}(\theta)} e^{i\theta}$$

Variable-density spiral offers greater flexibility for faster sampling - vds.n

Non-Cartesian Sampling / Gridding

- Irregularly sampled data
- Resample to grid to perform DFT

Clarenter

Gridding is a simple process to intorpolate samples to a Cartesian grid to perform a DFT/FFT

Rad229 Lec-11B Slide-11

Gridding Steps (Conceptual)

- Divide samples by density at location k
 Want to have uniform signal if we grid 1's
- Convolve sampled k locations with kernel c(k)
- Resample at grid points
- FFT Reconstruction
- De-apodize to undo convolution side effects

Jackson 1991 – gridmat.m

Spiral Point-Spread Functions

- "Swirl" artifacts from undersampling
- Rings of aliasing
- Odd/even changes character
- Variable Density: Less coherent

Off-Resonance Sensitivity

- Uniform-density $\phi \sim A|k|^2$
- Spiral usually longer than radial
- PSF broadening

Phase (radians/ π)

Off-resonance correction in recon

Rad229 Lec-11B Slide-14

Spiral Design Trade-offs

- 1. Choose tolerable readout duration
- 2. Trade scan time (#interleaves) for spatial resolution

TWIRL / WHIRL

- Faster start, with radial segment
- TWIRL: Jackson 1990
 - Radial, then Archimedean spiral
- WHIRL: Pipe 1999
 - Non-archimedean spiral
 - constrained by trajectory spacing
 - Faster spiral, particularly for many interleaves
 - whirl.m on website

WHIRL vs Archimedean Spiral

Rad229 Lec-11B Slide-17

Spiral in - Spiral out

- Useful for delayed TE
- Perhaps also for spin echo
- Simply add time-reversed gradient

3D Methods: Spiral Stack, TPI, Cones

Stack of Spirals

Cones, Twisted-Projections

Rad229 Lec-11B Slide-19

- Many variations (spherical stack of spirals)
- Density-compensated cones, TPI
- 3D design algorithms get very complicated

Irrarrazabal 1995, Boada 1997, Gurney 2006

Rewinders and Prewinders

- "Preparatory gradients"
 - Spiral rewinders
 - Phase-encode/rewind
 - spoilers
- Consider 3D rotation again
- Arbitrary path
- Speed always helps efficiency

Approaches to "Rewinder" Design

- Goal: Bring G and k to zero quickly
- Just use trapezoids
- Problem:
 - How much "power" to use on each axis
 - Finite segment method solutions (Meyer 2001)
 - Convex Optimization (more later!)

Spirals and Gradient/RF Delays

- Delays can have a few effects:
 - Mis-mapping of center of k-space, causes a lowfrequency "cloud"
 - In outer k-space, delays cause rotation of the image
 - Other effects can be similar to radial
- Often measure actual gradient waveforms

Gridding Example (FOV / Res)

Slide-23

Anna

Spiral Design Example

- Desire maximum 2π cycles between fat/water at 3T, and 1 mm resolution over 30cm FOV
- What is the maximum spiral duration?
- What is the minimum number of interleaves to achieve this?
 - -1/440Hz = 2.2 ms
 - Loop:
 - Design whirl(N,resolution,FOV)
 - If duration of g < 2.2ms, decrease N, otherwise increase N (using Bisection)

Rad229 Lec-11B Slide-24

Question 2: Spiral Design

Trajectory Comparison?

Trajectory Features	Cartesian	Radial Out	Projection	Spiral	EPI
Needs Gridding		Х	X	Х	Maybe
Flexible #shots				X	X
Low First Moments		Х		X	
Off-Resonance Causes	Displacement	Blur	Blur+Ringing	Blur	Large Displacement
Sensitivity to Delays	Minimal	Loss	Loss/Artifact	Rotation	Ghosts

Spiral Summary

- Flexible duration/coverage trade-off
 Center-out: TE~0, Low first-moments
- Archimedean, TWIRL, WHIRL, variable-density
- PSF with circular aliasing, swirl-artifact outside
- Off-resonance sensitivity, correct in reconstruction
- Variations: Spiral in/out, 3D TPI, 3D Cones
- Rewinder design

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu