Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-13B — Sampling and Timing Multidimensional Sampling and Timing

Brian Hargreaves bah@stanford.edu

Rad229 – MRI Signals and Sequences

Learning Objectives

- Explain sampling approaches for 3D Cartesian imaging
- Describe temporal sampling approaches
- Understand strategies for slice interleaving
- Explain principles of multiband sampling and controlled aliasing

3D Image (ky-kz) View Ordering/Grouping

- Freedom to sample arbitrarily
- Centric (ordered by radius first or azimuth (*φ*) first)
- Segment groups by *ky, kz, φ, kr*
- Sub-segment groups (*ky, kz, φ, kr,* randomly)

Rad229

4 Slide-Lec-13B

Dynamic Imaging Applications

- Often want to image over time:
	- Resolve motion: cardiac, joints, swallowing, perilstalsis (etc)
	- Contrast-enhancement a barat da barat da
	- Functional MRI
- Spectroscopic imaging (related)

(Courtesy of Krishna Nayak)

(Courtesy of Karla Miller)

There are numerous applications that demand continuous imaging over time

Spatial and Temporal (Spatiotemporal) Resolution

- Fundamental Trade-off
- Skip samples?
	- Reduce resolution
	- Reduce FOV
- Exploit temporal and spatial information

Question 1: Temporal Odd/Even Sampling?

Spatiotemporal Trade-offs: FOV

"TSENSE" Kellman P MRM 2001, Han M, MRM 2009

Spatiotemporal Trade-offs: View-Sharing

View-sharing is standard in many dynamic acquisitions as contrast changes in low-spatial frequencies are dominant

Rad229 9 Slide-Lec-13B

Spatiotemporal Trade-offs: View-Sharing

Temporal ky-kz Undersampling Patterns

Data Acquisition (ky-kz, except radial)

Single-Frame Point-Spread Functions

Slide-11

View-sharing performance can be compared by looking at the PSF of a single frame

Radial Imaging Options

- Low-resolution image from reduced #spokes
- Retrospective Spatial vs temporal resolution tradeoff

Rad229 Slide-12 Lec-13B

DISCO ky - kz - time Pattern (TWIST similar)

Compressed Sensing MRI

- Sample less data
- Choose image matching data that is most "compressible" (sparse)

$$
\min_{x} ||D_t \text{FSx} - d_t||_2 + \lambda_{CS} ||\Psi \text{x}||_1
$$
\nData Match

\nSparsity

\nLustig, et al. MRM 2007

Rad229

Slide-14 Lec-13B

CS Reconstruction and PSFs

Rad229 Slide-15 Lec-13B

Variable View Sharing

Uniform Random Density Golden Angle Radial

• Retrospectively select temporal footprint

Locally Low-Rank

• Model-free, Data-driven, Sparsity

Cardiac/Respiratory Acquisition Timing

- Cine: Exploit periodicity of cardiac/respiratory cycle
	- Sample N ky lines repeatedly, next N lines on next heartbeat. – High frame rate and spatial resolution
- Triggering: Start acquisition based on external trigger (EKG, plethysmograph, respiratory bellows)
- Gating: Excite continuously, but acquire only after trigger
- Can combine any/all of these

Rad229

Slide-18 Lec-13B

Question 2: Cine Acquisition?

Slice Interleaving

- Multislice acquisitions allow volumetric imaging
- Acquisitions can be *sequential* or *interleaved*
- Interleaving is time efficient if there is "dead time"
- Different ways to interleave (reduce adjacent-slice-saturation)
	- Sequential: 0, 1, 2, 3, 4, 5, 6, 7
	- Odd/Even: 0, 2, 4, 6, 1, 3, 5, 7
	- Bit-reversed: 0, 4, 2, 6, 1, 5, 3, 7

Interleaving is a common approach to improve acquisition efficiency for multislice scans

Rad229 Slide-20 Lec-13B

How Many Slices to Interleave?

- Usually specify TR, TI, Echo-train-length (ETL), Resolution, ...
	- Give "pulse durations" (T_{seq}) and RF power (T_{min})
	- $-$ N_{max} $=$ TR / T_{seq} or TR / T_{min}
	- Can re-order slices in "time slots"
	- Additional slices require another "acquisition"

More Flexible Interleaving

- Typically consider slice number and phase-encode number
- \cdot If N_{slices} $>$ N_{max}, scan is 2x, 3x, ... longer
- Decoupling phase encode number allows flexible interleaving

Rad229 Slide-22 Lec-13B

FLAIR / STIR?

- Additional dead-time during TI interval
- Can sometimes interleave other acquisitions
- Additional constraints on TR, TI, Tseq

Multiband Imaging

- Imaging multiple slices simultaneously
- Excitation: Multiply RF(t) by cos(t+φ) – Increases SAR
- Imaging:
	- Hadamard: Excite "1,1" and "1,-1" pattern, add & subtract
	- POMP: Alternate patterns, increase y FOV
	- Parallel Imaging: Use coils to separate slices
	- Blipped sequences: Gz "blips" induce slice-dependent phase
		- Like 3D k-space with limited excitation
		- Similar to Dixon water/fat: slices are like spectral peaks

Question 3: Slice-encoding Variations?

"Controlled Aliasing in Parallel Imaging" (CAIPIRINHA)

- 3D (ky-kz) sampling:
	- Hexagonal sampling offsets replicas
	- Reduced aliasing (further apart)
- 2D Multislice:
	- Alternating phase during excitation or blips
	- Offset replicas allows in-plane coil sensitivities to help separate slices
	- Can think of as 3D k-space

Question 4: Multiband Encoding?

Starting with a 1 kHz BW excitation, we want to excite two slices that are 5mm thick and 2cm apart (center-to-center)

• How do we modulate the pulse to excite 2 slices?

1kHz … 5mm, +/-2kHz … 2cm. Modulate with cos(2π 2000 t)

What is the image if we alternate excitations using the sequence cosine, sin, -cosine, -sin, … modulation on successive ky lines, assuming slices are each 1cm away from center? Slices are both shifted 1/4 FOV

Which FOV should we encode for 2x parallel imaging if we have 2 coils along y?

Large enough to separate objects (including parallel imaging)

Summary

- Multidimensional sampling:
	- ky-kz order
	- k-t sampling for dynamic imaging
	- View sharing and PSFs
	- Random/incoherent sampling and compressed sensing
- Multislice interleaving
- Simultaneous multislice imaging / controlled aliasing

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu