Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-14A — Magnetization Preparation Magnetization Preparation and Fat Suppression

Brian Hargreaves bah@stanford.edu

Rad229 - MRI Signals and Sequences

Learning Objectives

- Explain the role of magnetization preparation
- Draw a sequence showing the mag-prep and acquisition blocks
- Compare how different acquisition blocks fit with mag-prep
- Explain and compare saturation and inversion for nulling
- Justify why fat-suppression is used and describe three approaches to fat suppression

Magnetization Preparation Sequences

- Acquisition method may not give desired contrast
- "Prep" block adds contrast (and/or encoding)
 - MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler, ~1990)
 - Inversion-recovery (IR) prep for T₁ contrast
 - Fat saturation
 - T₂-preparation
 - Diffusion-weighted imaging

Basic Contrast of Sequences

- Spin Echo
 PD, T1, T2
- Gradient Echo

 bSSFP, Gradient-Spoiled, RF-spoiled
- Magnetization Prepared:
 - Additional or improved contrasts
 - 3D imaging
 - Improved efficiency

Slide-5

Mag-Prep Sequences: General Considerations

Acquisition Sequence

- Mag-Prep frequency (contrast vs efficiency)
- Acquisition block length (contrast wears off vs efficiency)
- Transitions/Transients? Necessary to avoid artifacts
- Mag-Prep for one slice or many slices?

Common "Acquisition" Sequences

- Consider readout robustness, efficiency, RF power
- Consider transitions and signal recovery

Spin-echo Train:

- + Robust to B₀
- + Simple transition
- + No recovering "leakage"
- = Moderately time efficient
- = Good signal efficiency
- High RF Power

Gradient or RF-Spoiled

- + Robust to B₀
- Some oscillation
- Some recovery / contrast loss
- + Time Efficient
- = Moderate signal efficiency
- + Low RF Power

Balanced SSFP

- Sensitive to B₀
- Transient Oscillation
- Some recovery / contrast loss
- + Time Efficient
- + Signal Efficient
- = Moderate RF Power

Different acquisition sequences have numerous characteristics to consider when combining with magetization preparation

Saturation or Inversion Nulling

- Eliminate the signal from something
 - Chemical species (fat suppression, water suppression)
 - Regions of image
- Advantages
 - Minimal cost (example, can do short TE)
 - Increase dynamic range for desired signal
 - Reduce artifacts from suppressed signal
- Disadvantages
 - Exciting unwanted signal it can come back!
 - Disturb/reduce the desired signal

Saturation vs Inversion Nulling

- Saturation: tip ~90° followed by dephasing
 - Aims to leave $M_z=0$ for all T_1
 - $-\,\Delta B_0$ or $\Delta B_{1^+}\,leaves$ non-zero M_z
 - Often spatially or spectrally selective
- Inversion: tip 180°, wait for null-point ($M_z=0$)
 - Selective based on T₁
 - Adiabatic improves ΔB_{1^+} robustness
 - May be frequency/spatially selective
- Combination: Often used!

Saturation vs Inversion Nulling: Dynamics

Saturation: tip ~90° followed by dephasing

Inversion: tip 180°, wait for null-point ($M_z=0$)

Fat in Magnetic Resonance

- Very prominent (subcutaneous, visceral, bone marrow, etc)
- Short T_1 , about 250-400ms at 1.5T to 3T
- Moderate T₂, about 80ms
- Spectra:
 - Mostly -3.5ppm (mechanism)
 - Multiple peaks, including ~10% at water

Fat Saturation

Slide-12

Fat Suppression: Contrast

PD FSE Fat-Sat PD FSE

Coronal Wrist

Coronal Wrist

Radial cyst was otherwise iso-intense with bone marrow (fat)

Fat saturation can enhance visibility of other tissues

Fat Suppression: Reduce Artifacts

- Fat is displaced (chemical shift)
- Can overlap with other tissue
- Suppression avoids this

Fat can cause artifacts in images, so fat suppression can reduce artifacts

Lec-14A Slide-14

Fat Suppression: Dynamic Range

- Digitized signal, Quantized
- DC signal MUCH higher with fat
- "Use up" quantization steps

Fat Suppression for Dynamic Range

Fat-suppressed images have more gray-levels in the non-fat signal

Fat-Saturated Spin-Echo

Fat-Saturated Balanced SSFP

- Recall $\alpha/2$ TR/2 setup with bSSFP
- Allows efficient fat-saturation

(Courtesy Vibhas Deshpande, MRM 2000

(Courtesy Klaus Scheffler, MRM 2001

Fat is bright on bSSFP, so magnetization preparation (including transition into/from steady state) is very useful

Question 1: Fat Saturation

Water-Only Excitation: Spectral/Spatial Pulses

- Not really mag-prep(!)
- Spectrally-selective excitation takes ~8-12ms (1.5T) or ~4-6ms (3T)
- Modulate RF and use slice select gradient
- Water-only, spectral-spatial, binomial (1-2-1, 1-3-3-1, etc)
- More robust to ΔB_0 and ΔB_{1^+} than fat-suppression
- Longer minimum TE

Dixon-Based Imaging

IDEAL Water-Fat Separation

ullet

ullet

Least-squares separation can be SNR-optimal, while multiple echoes add robustness to ΔB_0

Summary: Magnetization Preparation and Fat Suppression

- Modify contrast before an imaging sequence
- Pair magnetization prep with efficient acquisition
- Saturation vs Inversion for nulling
- Fat Suppression methods:
 - Fat saturation: remove the fat with saturation
 - Water-only excitation: do not excite fat
 - Dixon techniques: Multiple TEs to separate water/fat

What are other examples of magnetization preparation?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu