Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-15A — Magnetization Preparation II - Diffusion Diffusion, Spins, and MRI Signals

Daniel Ennis dbe@stanford.edu

Rad229 - MRI Signals and Sequences

Learning Objectives

- Understand that the MRI signal is sensitive to diffusion.
- Appreciate the relationship between random walks, diffusion, and MRI signal attenuation.
- Describe the dependence of the MRI signal on the diffusion coefficient.
- Recall the spatial and temporal scale of diffusion in biological tissues.

Diffusion – Bloch Equations

- Precession
 - Magnitude of \overrightarrow{M} unchanged
 - Phase (rotation) of \overrightarrow{M} changes with \overrightarrow{B}
- Relaxation
 - $-T_1$ change are slow O(100ms)
 - T₂ changes are fast O(10ms)
 - Magnitude of M can be ~0 if T2<<T1
- Diffusion
 - Spins are thermodynamically driven to exchange positions.
 - This exchange is *irreversible* and can lead *signal attenuation*.

Diffusion – 1D Random Walk

Diffusion – 1D Random Walk

Diffusion – 2D Random Walk

Diffusion – Free vs. Restricted

Diffusion in biological tissues can be free (isotropic) or restricted (anisotropic)

Diffusion – Free vs. Restricted

The variance of spin position is directly related to the diffusion coefficient.

Diffusion and Gradients

 $\phi(t) = \gamma \int_{0}^{t} \vec{G}(\tau) \cdot \vec{r}(\tau) d\tau$

Phase from a Gradient

Applied Gradient

Spin History (Random Walk!)

Gradients impart a position-dependent phase on the spin

Diffusion and Gradients

Stationary spins don't accumulate phase, but diffusing spins have non-zero phase.

Movies courtesy of Kévin Moulin

Diffusion and Gradients

Diffusion – b-value [s/mm²]

Diffusion – b-value [s/mm²]

Diffusion – b-value [s/mm²]

1000 s/mm² is typical. Why?
For D=700 mm²/s, S/S₀~50%.

Tissue	Diffusion Coefficient [10 ⁻⁶ mm ² /s]
White matter	670-800
Cortical grey matter	800-1000
Deep grey matter	700-850
CSF	3000-3400

How do we acquire diffusion weighted images?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu