Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-15B — Magnetization Preparation II - Diffusion Diffusion Weighted Imaging

Daniel Ennis dbe@stanford.edu

Rad229 – MRI Signals and Sequences

Learning Objectives

- Recall a simple expression for how the MRI signal depends on diffusion.
- Understand how gradients control diffusion sensitivity.
- Appreciate how the spin echo DWI sequence is built.
- Describe the steps required to measure diffusion with MRI.
- Distinguish high and low ADC from DWI-based images.
- Explain the concept of T₂ shine through from the signal eqn.

Diffusion and Gradients

Diffusion – Gradients

Rad229 Lec-15B Slide-5

Diffusion – Gradients

Diffusion – Gradients

Spin Echo EPI

Diffusion Weighted Spin Echo EPI

Diffusion – b-value [s/mm²]

Tissue	Diffusion Coefficient [10 ⁻⁶ mm ² /s]
White matter	670-800
Cortical grey matter	800-1000
Deep grey matter	700-850
CSF	3000-3400

Experiment: 1) Set b=0, Measure S₀ 2) Set b≠0, Measure S 3) Calculate D

High D --> High signal loss Low D --> Low signal loss

High b-value --> High diffusion sensitivity, but low SNR Low b-value --> Low diffusion sensitivity, but high SNR

https://radiopaedia.org/articles/apparent-diffusion-coefficient-1?

Image: http://mriquestions.com/making-a-dw-image.html

Allera

Image: http://mriquestions.com/making-a-dw-image.html

DWI Example – Chronic Infarct

Does the lesion have a higher or lower diffusion coefficient?

Srinivasan A, et al. State-of-the-art imaging of acute stroke. Radiographics 2006;26 Suppl 1:S75-95.

Rad229 Lec-15B Slide-16

DWI Example - Acute Stroke

Does the lesion have a higher or lower diffusion coefficient?

Srinivasan A, et al. State-of-the-art imaging of acute stroke. Radiographics 2006;26 Suppl 1:S75-95.

Rad229 Lec-15B Slide-17

DWI – T₂ Shine Through

- <u>**High**</u> signal intensity on DWI:
 - Low (restricted) diffusion (spins didn't move too far)
 - OR Long T2 (signal didn't decay too much)
- **Low** signal intensity on DWI:
 - High diffusion coefficient
 - OR short T2 (signal decayed a lot)

$$S = \left(1 - e^{-\frac{TR}{T_1}}\right) e^{-\frac{TE}{T_2}} e^{-bD}$$

ADC Map

T2w Spin Echo

http://mri-q.com/t2-shine-through.html

What else can we measure with diffusion?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu