
Remarks:
1. Each problem is worth 10 points.
2. If you have any questions about the solutions, please contact haiyan@stat.stanford.edu for problems 5, 6 and 12; dsmall@stat.stanford.edu or johanlim@stat.stanford.edu for problems 14, 17, 21, 28 and A.

5
(a)
\[R(\theta, d_1) = -2(1 - 2\theta(1 - \theta)) + 2\theta(1 - \theta) = -6\theta^2 + 6\theta - 2 \]
\[R(\theta, d_2) = 6\theta^2 - 6\theta + 1 \]
\[R(\theta, d_3) = 0 \]

(b) Since \(R(\theta, d_1) \leq -1/2 \) and \(R(\theta, d_2) \leq 1 \), \(d_1 \) is the minimax rule.

(c) Using a uniform prior, we have \(E(R(\theta, d_1)) = -1 \) and \(E(R(\theta, d_2)) = 0 \), so \(d_1 \) is the Bayes rule.

(d)
\[R(\theta, d_1) = -D(1 - 2\theta(1 - \theta)) + 2\theta(1 - \theta) = -(2D + 2)\theta^2 + (2D + 2)\theta - D \leq -\frac{D}{2} + \frac{1}{2} \]
\[R(\theta, d_2) = (2D + 2)\theta^2 - (2D + 2)\theta + 1 \leq 1 \]
\[R(\theta, d_3) = 0 \]

So \(d_1 \) is minimax when \(D > 1 \), and \(d_3 \) is minimax when \(D < 1 \). Using a uniform prior we have \(R(\theta, d_1) = 1/3 - (2D/3) \) and \(R(\theta, d_2) = 2/3 - D/3 \), so \(d_1 \) is the Bayes rule when \(D > 1/2 \) and \(d_3 \) is the Bayes rule when \(D < 1/2 \).

6
(a)
Bayes rule is
\[d^*(x) = \begin{cases} A & \text{if } \frac{f(x|A)}{f(x|B)} > \frac{\omega_A \pi_A}{\omega_B \pi_B} \\ B & \text{otherwise} \end{cases} \]
where \(\omega_A = l(A, d(x) = B) \); and \(\omega_B = l(B, d(x) = A) \). Here we use 0-1 loss, so \(\frac{\omega_A \pi_A}{\omega_B \pi_B} = 1 \). Since
\[\frac{f(x|A)}{f(x|B)} = \frac{\exp(-\frac{-2x}{2})}{\exp(-\frac{-2(x-1)}{2})} = \exp(-2(x-1)), \]
we obtain \(d^*(x) = A \) if \(x < 1 \), and \(d^*(x) = B \) if \(x > 1 \).

(b)
We classify \(x = 1.5 \) to class B. \(P(error) = P(A|x = 1.5) = 0.27 \)

(c)
\[P(error) = 0.5P(x > 1|A) + 0.5P(x < 1|B) = 0.1587 \]

(d)
Now \(\omega_A = 2\omega_B \), so \(\frac{\omega_A \pi_A}{\omega_B \pi_B} = 2 \). Thus \(d^*(x) = A \) if \(\frac{f(x|A)}{f(x|B)} = \exp(-2(x-1)) > 2 \), that is, \(d^*(x) = A \) if \(x < 1.35 \) and \(d^*(x) = B \) if \(x > 1.35 \).
we also classify \(x = 1.5 \) to class B and \(p(\text{error}) = 0.27 \). For the Bayes rule, \(p(\text{error}) = 0.5P(x > 1.35|A) + 0.5P(x < 1.35|B) = 0.17 \)

For \(\pi_A = 2/3 \), we have the same Bayes rule, that is, \(d^*(x) = A \) if \(x < 1.35 \) and \(d^*(x) = B \) if \(x > 1.35 \).

12
We first show that \(X_{(1)} \) follows exponential \((\theta/n)\), because

\[
P(X_{(1)} > a) = \prod_{i=1}^{n} P(X_i > a) = \exp\left(-\frac{n}{\theta}a\right)
\]

Thus we obtain

\[
R(\theta, d_1) = E(\bar{X} - \theta)^2 = \text{Var}(\bar{X}) = \frac{\theta^2}{n}
\]

\[
R(\theta, d_1) = E(nX_{(1)} - \theta)^2 = n^2 E(X_{(1)} - \theta/n)^2 = n^2 \text{var}(X_{(1)}) = n^2\frac{\theta^2}{n^2} = \theta^2
\]

\[
R(\theta, d_3) = E\left(\frac{n}{n+1}\bar{X} - \theta\right)^2 = E\left(\frac{n}{n+1}\bar{X} - \frac{n}{n+1}\theta - \frac{\theta}{n+1}\right)^2 = \text{var}\left(\frac{n}{n+1}\bar{X}\right) + E\left(\frac{\theta^2}{(n+1)^2}\right)
\]

\[
= \left(\frac{n}{n+1}\right)^2\frac{\theta^2}{n} + \frac{\theta^2}{(n+1)^2} = \frac{\theta^2}{n+1}
\]

Thus \(d_3 \) dominates \(d_1 \) and \(d_2 \).

14
(a)
The posterior distribution of \(p \) is

\[
h(p|x) = \frac{f(x)p^f(p)}{f(x)} = \frac{(1-p)^{x-1}p}{\int_0^1 (1-p)^{x-1}pdp}
\]

\[
= \frac{(1-p)^{x-1}p}{\frac{\Gamma(2)\Gamma(x)}{\Gamma(x+2)}} = x(x+1)p(1-p)^{x-1}
\]

The third line uses the beta integral on page 594. We conclude that the posterior distribution of \(p \) is beta\((2, x)\).

(b)
The Bayes estimate of \(p \) under squared error loss is the posterior mean. The Bayes estimate of \(p \) is thus \(\frac{2}{x+2} \) since the posterior distribution of \(p \) is beta\((2, x)\). The posterior mean can be derived directly -

\[
\int_0^1 px(x+1)p(1-p)^{x-1}dp = x(x+1)\int_0^1 p^2(1-p)^{x-1}dp
\]

\[
= x(x+1)\frac{\Gamma(3)\Gamma(x)}{\Gamma(3+x)}
\]

\[
= \frac{2}{x+2}
\]
(c) The log likelihood of \(p \) is
\[
 l(p|x) = (x - 1) \log(1 - p) + \log p
\]
Thus,
\[
 l'(p|x) = \frac{1 - x}{1 - p} + \frac{1}{p}
\]
Setting the above equation to 0 and solving for \(p \) gives \(p = \frac{1}{x} \). We have \(l''(p|x) = \frac{1-x}{(1-p)^2} - \frac{1}{p^2} < 0 \). Thus, the MLE is \(\hat{p}_{MLE} = \frac{1}{x} \).

17
The posterior probabilities of \(H \) and \(K \) are
\[
 P(H|X) = \frac{f(x|H)P(H)}{f(x|H)P(H) + f(x|K)P(K)}
\]
\[
 P(K|X) = \frac{f(x|K)P(K)}{f(x|H)P(H) + f(x|K)P(K)}
\]
Thus, the posterior odds of \(H \) to \(K \) are
\[
 \frac{P(H|X)}{P(K|X)} = \frac{\frac{f(x|H)P(H)}{f(x|H)P(H) + f(x|K)P(K)}}{\frac{f(x|K)P(K)}{f(x|H)P(H) + f(x|K)P(K)}}
 = \frac{P(H)}{P(K)} \frac{f(x|H)}{f(x|K)}
\]
Thus, the posterior odds of \(H \) to \(K \) are equal to the prior odds multiplied by the likelihood ratio.

21
Let \(Y \) be distributed according to the posterior distribution of \(\theta|X = x \). Suppose that \(m \) is a median of the posterior distribution if \(m_0 \leq m \leq m_1 \) and suppose \(c > m_1 \). We will show that \(E(|Y - m|) < E(|Y - (m + c)|) \). We have
\[
 E(|Y - m|) - E(|Y - (m + c)|) = \int_{-\infty}^{m} -cf(y)dy + \int_{m}^{m+c} [(y - m) - (c + m - y)]f(y)dy + \int_{m+c}^{\infty} cf(y)dy
\]
\[
 = \int_{-\infty}^{m} -cf(y)dy + \int_{m}^{m+c} (y - m) - (c + m - y) - cf(y)dy
 + \int_{m}^{m+c} cf(y)dy + \int_{m+c}^{\infty} cf(y)dy
\]
\[
 = \int_{-\infty}^{m} -cf(y)dy + \int_{m}^{\infty} cf(y)dy + \int_{m}^{m+c} (2y - 2m - 2c)f(y)dy
 = \int_{m}^{m+c} (2y - 2m - 2c)f(y)dy
 > 0
\]
In the second and third lines, we add and subtract the term \(\int_{m}^{m+c} cf(y)dy \). In the fifth line, we use the fact that \(m \) is a median and hence \(\int_{-\infty}^{m} -cf(y)dy + \int_{m}^{\infty} cf(y)dy = 0 \). We can use a similar
argument to show that if $c < m_0$, we have $E(|Y - m|) - E(|Y - (m + c)|) < 0$. If $m_0 < m_2 < m_1$, we have

$$E(|Y - m|) - E(|Y - m_2|) = \int_{-\infty}^{m} -(m - m_2)f(y)dy + \int_{m}^{m_2} [(y - m) - (m_2 - y)]f(y)dy$$

$$+ \int_{m_2}^{\infty} (m_2 - m) f(y)dy$$

$$= \int_{-\infty}^{m} -(m - m_2)f(y)dy + \int_{m_2}^{\infty} (m_2 - m) f(y)dy$$

$$= 0$$

Hence the posterior loss is minimized by any median of the posterior distribution.

28

(a) Suppose that θ has a Gamma(a, b) distribution. The posterior distribution of θ is proportional to

$$f(\theta|X_1, \ldots, X_n) \propto f(X_1, \ldots, X_n|\theta)f(\theta)$$

$$\propto e^{-n\theta} \sum_{i=1}^{n} X_i^a \frac{b^a}{\Gamma(a)} \theta^{a-1} e^{-b\theta}$$

$$\propto \theta^{a-1} \sum_{i=1}^{n} X_i e^{-(n+b)\theta}$$

The last expression is proportional to the Gamma$(a + \sum_{i=1}^{n} X_i, n + b)$ density. Hence the posterior distribution of θ is Gamma$(a + \sum_{i=1}^{n} X_i, n + b)$.

(b) The Bayes estimate of θ under squared error loss is the posterior mean (Theorem A, page 584). Hence from part (a), the Bayes estimate of θ is the mean of a Gamma$(a + \sum_{i=1}^{n} X_i, n + b)$ random variable, i.e.,

$$\hat{\theta}_{Bayes} = \frac{a + \sum_{i=1}^{n} X_i}{b + n}$$

We have

$$\frac{a + \sum_{i=1}^{n} X_i}{b + n} = \frac{a}{b} \frac{ab}{a(b + n)} + \frac{\sum_{i=1}^{n} X_i}{n} \frac{an}{a(b + n)}$$

Thus the Bayes estimate is a weighted average of the prior mean and \bar{X}.

(c) The risk of \bar{X} under squared error loss is

$$E(\bar{X} - \theta)^2 = \frac{Var(X)}{n} = \frac{\theta}{n}$$

The risk of the Bayes estimate under squared error loss is

$$E\left(\frac{a + \sum_{i=1}^{n} X_i}{b + n} - \theta\right)^2 = [E\left(\frac{a + \sum_{i=1}^{n} X_i}{b + n} - \theta\right)]^2 + Var\left(\frac{a + \sum_{i=1}^{n} X_i}{b + n}\right)$$

$$= \left(\frac{a - b\theta}{b + n}\right)^2 + \frac{n\theta}{(b + n)^2}$$

For values of θ near $\frac{a}{b}$, the Bayes estimate has smaller risk than \bar{X}. For values of θ far from $\frac{a}{b}$, \bar{X} has smaller risk than the Bayes estimate.
Extra Problem A

Because the prior distribution of \(p \) is

\[
f(p) = \begin{cases}
\frac{1}{2} & \text{w.p. } Q \\
\text{Uniform}(0, 1) & \text{w.p. } 1-Q
\end{cases}
\]

and the data \(\{X_i\}_{i=1}^n \) are i.i.d. Bernoulli \(p \), the posterior distribution is evaluated as

\[
f(p|\text{Obs.}) = f(\text{Obs.}|p) \cdot f(p) / f(\text{Obs.})
\]

\[
= \left(\frac{n}{x} \right) \left(\frac{1}{2} \right)^n \cdot Q / g(x) \quad \text{when } p = \frac{1}{2}
\]

\[
= \left(\frac{n}{x} \right) p^x (1-p)^{(n-x)} \cdot (1-Q) / g(x) \quad \text{when } p \neq \frac{1}{2},
\]

where \(x = \sum_{i=1}^n X_i \) and \(g(x) \) denotes the marginal distribution of \(x \). Hence, the posterior probabilities for each hypothesis are respectively,

\[
P(H_0|\text{Obs.}) = \frac{1}{g(x)} \left(\frac{n}{x} \right) \left(\frac{1}{2} \right)^n \cdot Q
\]

\[
P(H_1|\text{Obs.}) = \frac{1}{g(x)} \int_0^1 \left(\frac{n}{x} \right) p^x (1-p)^{(n-x)} dp \cdot (1-Q)
\]

\[
= \frac{1}{g(x)} \left(\frac{n}{x} \right) \Gamma(x+1) \Gamma(n-x+1) / \Gamma(n+2) \cdot (1-Q) = \frac{1}{g(x)} (1-Q)/(n+1).
\]

Using zero-one loss, the Bayes test will reject the null hypothesis when

\[
P(H_1|\text{Obs.}) > P(H_0|\text{Obs.}).
\]

or equivalently

\[
(1-Q)/(n+1) > \left(\frac{n}{x} \right) \left(\frac{1}{2} \right)^n \cdot Q.
\]

Since, according to Stirlings’ formula, \(1/(n) \) can be approximated by,

\[
\sqrt{2\pi n} \left(\frac{x}{n} \right)^{x+1/2} \left(1 - \frac{x}{n} \right)^{-x+1/2},
\]

the rejection region for the Bayes test is approximately

\[
\left(\frac{x}{n} \right)^{x+1/2} \left(1 - \frac{x}{n} \right)^{-x+1/2} \cdot \sqrt{\frac{2\pi}{n}} \cdot \frac{1-Q}{Q} > \left(\frac{1}{2} \right)^n
\]

or equivalently

\[
\left(\frac{x}{n} \right)^x \left(1 - \frac{x}{n} \right)^{-x} / \left(\frac{1}{2} \right)^n > \sqrt{\frac{n}{x/n(1-x/n)}} \cdot \sqrt{\frac{1}{2\pi} \cdot \frac{Q}{1-Q}}.
\]

The likelihood ratio is

\[
\Lambda = \left(\frac{1}{2} \right)^n / \left(\frac{x}{n} \right)^x \left(1 - \frac{x}{n} \right)^{-x}
\]
Under the null hypothesis, we have that $-2\log \Lambda$ has approximately a $\chi^2(1)$ distribution (page 310). Thus, the approximate rejection region for the likelihood ratio test is

$$\left(\frac{x}{n}\right)^x \left(1 - \frac{x}{n}\right)^{n-x} \left(\frac{1}{2}\right)^n > \chi^2_{1-a}/2.$$

Noting that the rejection region for the Bayes test is $O(\sqrt{n})$ whereas the rejection region for the likelihood ratio test with a fixed significance level is $O(1)$, we may conclude that the Bayes test is rather conservative compared to a fixed significance level likelihood ratio test.