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0.1 Markov Chains

0.1.1 Generalities

A Markov Chain consists of a countable (possibly finite) set S (called the state space) together
with a countable family of random variables X◦, X1, X2, · · · with values in S such that

P [Xl+1 = s | Xl = sl, Xl−1 = sl−1, · · · , X◦ = s◦] = P [Xl+1 = s | Xl = sl].

We refer to this fundamental equation as the Markov property. The random variables
X◦, X1, X2, · · · are dependent. Markov chains are among the few sequences of dependent
random variables which are of a general character and have been successfully investigated
with deep results about their behavior. Later we will discuss martingales which also provide
examples of sequences of dependent random variables. Martingales have many applications
to probability theory.

One often thinks of the subscript l of the random variable Xl as representing the time
(discretely), and the random variables represent the evolution of a system whose behavior is
only probabilistically known. Markov property expresses the assumption that the knowledge
of the present (i.e., Xl = sl) is relevant to predictions about the future of the system, however
additional information about the past (Xj = sj, j ≤ l − 1) is irrelevant. What we mean
by the system is explained later in this subsection. These ideas will be clarified by many
examples.

Since the state space is countable (or even finite) it customary (but not always the case)
to use the integers Z or a subset such as Z+ (non-negative integers), the natural numbers
N = {1, 2, 3, · · · } or {0, 1, 2, · · · , m} as the state space. The specific Markov chain under
consideration often determines the natural notation for the state space. In the general case
where no specific Markov chain is singled out, we often use N or Z+ as the state space. We
set

P l,l+1
ij = P [Xl+1 = j | Xl = i]

For fixed l the (possibly infinite) matrix Pl = (P l,l+1
ij ) is called the matrix of transition

probabilities (at time l). In our discussion of Markov chains, the emphasis is on the case where
the matrix Pl is independent of l which means that the law of the evolution of the system is
time independent. For this reason one refers to such Markov chains as time homogeneous or
having stationary transition probabilities. Unless stated to the contrary, all Markov chains
considered in these notes are time homogeneous and therefore the subscript l is omitted
and we simply represent the matrix of transition probabilities as P = (Pij). P is called
the transition matrix. The non-homogeneous case is generally called time inhomogeneous or
non-stationary in time!
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The matrix P is not arbitrary. It satisfies

Pij ≥ 0,
∑

j

Pij = 1 for all i. (0.1.1.1)

A Markov chain determines the matrix P and a matrix P satisfying the conditions of (0.1.1.1)
determines a Markov chain. A matrix satisfying conditions of (0.1.1.1) is called Markov or
stochastic. Given an initial distribution P [X◦ = i] = pi, the matrix P allows us to compute
the the distribution at any subsequent time. For example, P [X1 = j, X◦ = i] = pijpi and
more generally

P [Xl = jl, · · · , X1 = j1, X◦ = i] = Pjl−1jl
Pjl−2jl−1

· · ·Pij1pi. (0.1.1.2)

Thus the distribution at time l = 1 is given by the row vector (p1, p2, · · · )P and more
generally at time l by the row vector

(p1, p2, · · · ) PP · · ·P︸ ︷︷ ︸
l times

= (p1, p2, · · · )P l. (0.1.1.3)

For instance, for l = 2, the probability of moving from state i to state j in two units of time
is the sum of the probabilities of the events

i → 1 → j, i → 2 → j, i → 3 → j, · · · , i → n → j,

since they are mutually exclusive. Therefore the required probability is
∑

k PikPkj which
is accomplished by matrix multiplication as given by (0.1.1.3) Note that (p1, p2, · · · ) is a
row vector multiplying P on the left side. Equation (0.1.1.3) justifies the use of matrices
is describing Markov chains since the transformation of the system after l units of time is
described by l-fold multiplication of the matrix P with itself.

This basic fact is of fundamental importance in the development of Markov chains. It is
convenient to make use of the notation P l = (P

(l)
ij ). Then for r + s = l (r and s non-negative

integers) we have

P l = P rP s or P
(l)
ij =

∑
k

P
(r)
ik P

(s)
kj . (0.1.1.4)

Example 0.1.1.1 Let Z/n denote integers mod n, let Y1, Y2, · · · be a sequence of indepen-
dent indentically distributed (from now on iid) random variables with values in Z/n and
density function

P [Y = k] = pk.
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Set Y◦ = 0 and Xl = Y◦ + Y1 + · · ·+ Yl where addition takes place in Z/n. Using

Xl+1 = Yl+1 + Xl,

the validity of the Markov property and time stationarity are easily verified and it follows
that X◦, X1, X2 · · · is a Markov chain with state space Z/n = {0, 1, 2, · · · , n − 1}. The
equation Xl+1 = Yl+1 + Xl also implies that transition matrix P is

P =



p◦ p1 p2 · · · pn−2 pn−1

pn−1 p◦ p1 · · · pn−3 pn−2

pn−2 pn−1 p◦ · · · pn−4 pn−3
...

...
...

. . .
...

...
p2 p3 p4 · · · p◦ p1

p1 p2 p3 · · · pn−1 p◦


We refer to this Markov chain as the general random walk on Z/n. Rather than starting at
0 (X◦ = Y◦ = 0), we can start at some other point by setting Y◦ = m where m ∈ Z/n. A

possible way of visualizing the random walk is by assigning to j ∈ Z/n the point e
2πij

n on the
unit circle in the complex plane. If for instance pk = 0 for k 6= 0,±1, then imagine particles
at any and all locations j ↔ e

2πij
n , which after passage of one unit of time, stay at the same

place, or move one unit counterclockwise or clockwise with probabilities p◦, p1 respectively
and independently of each other. The fact that moving counterclockwise/clockwise or staying
at the same location have the same probabilities for all locations j expresses the property
of spatial homogeneity which is specific to random walks and not shared by general Markov
chains. This property is expressed by the rows of the transition matrix being shifts of each
other as observed in the expression for P . For general Markov chains there is no relation
between the entries of the rows (or columns) except as specified by (0.1.1.1). Note that the
transition matrix of the general random walk on Z/n has the additional property that the
column sums are also one and not just the row sums as stated in (0.1.1.1). A stochastic
matrix with the additional property that column sums are 1 is called doubly stochastic.

Example 0.1.1.2 We continue with the preceding example and make some modifications.
Assume Y◦ = m where 1 ≤ m ≤ n− 2, and pj = 0 unless j = 1 or j = −1 (which is the same
thing as n − 1 since addition is mod n.) Set P (Y = 1) = p and P [Y = −1] = q = 1 − p.
Modify the matrix P by leaving Pij unchanged for 1 ≤ i ≤ n− 2 and defining

P◦◦ = 1, P◦j = 0, Pn−1 n−1 = 1, Pn−1 k = 0, j 6= 0, k 6= n− 1.

This is still a Markov chain. The states 0 and n−1 are called absorbing states since transition
outside of them is impossible. Note that this Markov chain describes the familiar Gambler’s
Ruin Problem. ♠
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Remark 0.1.1.1 In example 0.1.1.1 we can replace Z/n with Z or more generally Zm so
that addition takes place in Zm. In other words, we can start with iid sequence of random
variables Y1, Y2, · · · with values in Zm and define

X◦ = 0, Xl+1 = Yl+1 + Xl.

By the same reasoning as before the sequence X◦, X1, X2, · · · is a Markov chain with state
space Zm. It is called the general random walk on Zm. If m = 1 and the random variable Y
(i.e. any of the Yj’s) takes only values ±1 then it is called a simple random walk on Z and if
in addition the values ±1 are assumed with equal probability 1

2
then it is called the simple

symmetric random walk on Z. The analogous definition for Zm is obtained by assuming that
Y only takes 2m values

(±1, 0, · · · , 0), (0,±1, 0, · · · , 0), · · · , (0, · · · , 0,±1),

each with probability 1
2m

. One similarly defines the notions of simple and symmetric random
walks on Z/n. ♥

In a basic course on probability it is generally emphasized that the underlying probability
space should be clarified before engaging in the solution of a problem. Thus it is important
to understand the underlying probability space in the discussion of Markov chains. This is
most easily demonstrated by looking at the Markov chain X◦, X1, X2, · · · , with finite state
space {1, 2, · · · , n}, specified by an n × n transition matrix P = (Pij). Assume we have
n biased dice with each die having n sides. There is one die corresponding each state. If
the Markov chain is in state i then the ith die is rolled. The die is biased and side j of die
number i appears with probability Pij. For definiteness assume X◦ = 1. If we are interested
in investigating questions about the Markov chain in L ≤ ∞ units of time (i.e., the subscript
l ≤ L), then we are looking at all possible sequences 1k1k2k3 · · · kL if L < ∞ (or infinite
sequences 1k1k2k3 · · · if L = ∞). The sequence 1k1k2k3 · · · kL is the event that die number 1
was rolled and side k1 appeared; then die number k1 was rolled and side k2 appeared; then
die number k2 was rolled and side number k3 appeared and so on. The probability assigned
to this event is

P1k1Pk1k2Pk2k3 · · ·PkL−1kL
.

One can graphically represent each event 1k1k2k3 · · · kL as a function consisting of broken
line segments joining the point (0, 1) to (1, k1), (1, k1) to (2, k2), (2, k2) to (3, k3) and so on.
Alternatively one can look at the event 1k1k2k3 · · · kL as a step function taking value km on
the interval [m, m + 1). Either way the horizontal axis represents time and the vertical axis
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the state or site. Naturally one refers to a sequence 1k1k2k3 · · · kL or its graph as a path, and
each path represents a realization of the Markov chain. Graphic representations are useful
devices for understanding Markov chains. The underlying probability space Ω is the set of
all possible paths in whatever representation one likes. Probabilities (or measures in more
sophisticated language) are assigned to events 1k1k2k3 · · · kL or paths (assuming L < ∞)
as described above. We often deal with conditional probabilities such as P [?|X◦ = i]. The
appropriate probability space in this, for example, will all paths of the form ik1k2k3 · · · .

Example 0.1.1.3 Suppose L = ∞ so that each path is an infinite sequence 1k1k2k3 · · · in
the context described above, and Ω is the set of all such paths. Assume P

(l)
ij = α > 0 for

some given i, j and l. How is this statement represented in the space Ω? In this case we
consider all paths ik1k2k3 · · · such that kl = j and no condition on the remaining km’s. The
statement P

(l)
ij = α > 0 means this set of paths in Ω has probability α. ♠

What makes a random walk special is that instead of having one die for every site, the
same die (or an equivalent one) is used for all sites. Of course the rolls of the die for different
sites are independent. This is the translation of the space homogeneity property of random
walks to this model. This construction extends in the obvious manner to the case when
the state space is infinite (i.e., rolling dice with infinitely many sides). It should be noted
however, that when L = ∞ any given path 1k1k2k3 · · · extending to ∞ will generally have
probability 0, and sets of paths which are specified by finitely many values ki1ki2 · · · kim will
have non-zero probability. It is important and enlightening to keep this description of the
underlying probability space in mind. It will be further clarified and amplified in the course
of future developments.

Example 0.1.1.4 Consider the simple symmetric random walk X◦ = 0, X1, X2, · · · where
one may move one unit to the right or left with probability 1

2
. To understand the underlying

probability space Ω, suppose a 0 or a 1 is generated with equal probability after each unit of
time. If we get a 1, the path goes up one unit and if we a 0 then the path goes down one unit.
Thus the space of all paths is the space of all sequences of 0’s and 1’s. Let ω = 0a1a2 · · ·
denote a typical path. Expanding every real number α ∈ [0, 1] in binary, i.e., in the form

α =
a1

2
+

a2

22
+

a3

23
+ · · · ,

with aj = 0 or 1, we obtain a one to one correspondence between [0, 1] and the set of paths1.
Under this correspondence the set of paths with a1 = 1 is precisely the interval [1

2
, 1] and

1There is the minor problem that a rational number has more than one representation, e.g., 1
2 = 1

4 + 1
8 +· · ·

But such non-uniqueness occurs for only rational numbers which are countable and therefore have probability
zero as will become clear shortly. Thus it does not affect our discussion.
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the set of paths with a1 = 0 is the interval [0, 1
2
]. Similarly, the set of paths with a2 = 0

corresponds to [0, 1
4
] ∪ [1

2
, 3

4
]. More generally the subset of [0, 1] corresponding to ak = 0 or

ak = 1 is a union of 2k disjoint intervals each of length 1
2k+1 . Therefore the probability of the

set of paths with ak = 0 (or ak = 1) is the just the sum of the lengths of these intervals. Thus
in this case looking at the space of paths and corresponding probabilities as determined by
the simple symmetric random walk is nothing more than taking lenths of unions of intervals
in the most familiar way. ♠

With the above description of the undelying probability space Ω in mind, we can give
a more precise meaning to the word system and its evolution as referenced earlier. Assume
the state space is finite, S = {1, 2, · · · , n} for example, and imagine a large number Mn of
dice with M identical dice for each state i. As before assume for definiteness that X◦ = 1
and at time l = 0 all M dice corresponding to state 1 are rolled independently of each other.
The outcomes are k1

1, k
2
1, · · · , kM

1 . At time l = 1, k1
1 dice corresponding to state 1, k2

1 dice
corresponding state 2, k3

1 dice corresponding state 3, etc. are rolled independently. The
outcomes will be k1

2 dice will show 1, k2
2 will show number 2 etc. Repeating the process,

we independently roll k1
2 dice corresponding state 1, k2

2 dice corresponding to state 2, k3
2

dice corresponding to state 3 etc. The outcomes will be k1
3, k

2
3, · · · , kn

3 , and we repeat the
process. In this fashion instead of obtaining a single path we obtain M paths independently
of each other. At each time l, the numbers k1

l , k
2
l , k

3
l , · · · , kM

l define the system and the
paths describe the evolution of the system. The assumption that X◦ = 1 was made only
for convenience and we could have assumed that at time l = 0, the system was in state
k1
◦, k

2
◦, · · · , kM

◦ in which case at time l = 0 dice numbered k1
◦, k

2
◦, · · · , kM

◦ would have been
rolled independently of each other. Since M is assumed to be an arbitrarily large number,
from the set of paths that at time l are in state i, a portion approximately equal to Pij

transfer to state j in time l + 1 (Law of Large Numbers).
To give another example, assume we have M (a large number) of dice all showing number

1 at time l = 0. At the end of each unit of time, the number on each die will either remain
unchanged, say with probability p◦, or will change by addition of ±1 where addition is in
Z/n. We assume ±1 are equally probable each having probability p1 and p◦ + 2p1 = 1. As
time goes on the composition of the numbers on the dice will change, i.e, the system will
evolve in time. While any individual die will undergo many changes (with high probability),
one may expect that the total composition of the numbers on the dice to settle down to
something which can be understood, like for example, approximately the same number of
0’s, 1’s, 2’s, · · · , n − 1’s. In other words, while each individual die changes, the system as
a whole will reach some form of equilibrium. An important goal of this course is provide
an analytical framework which would allow us to effectively deal with phenomena of this
nature.
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EXERCISES

Exercise 0.1.1.1 Consider the simple symmetric random walks on Z/7 and Z with X◦ = 0.
Using a random number generator make graphs of ten paths describing realizations of the
Markov chains from l = 0 to l = 100.

Exercise 0.1.1.2 Consider the simple symmetric random walk S◦ = (0, 0), S1,S2, · · · on Z2

where a path at (i, j) can move to either of four points (i ± 1, j), (i, j ± 1) with probability
1
4
. Assume we impose the requirement that the random walk cannot visit any site more than

once. Is the resulting system a Markov chain? Prove your answer.

Exercise 0.1.1.3 Let S◦ = 0, S1, S2, · · · denote the simple symmetric random walk on Z.
Show that the sequence of random variables Y◦, Y1, Y2, · · · where Yj = |Sj| is a Markov chain
with state space Z+ and exhibit its transition matrix.

Exercise 0.1.1.4 Consider the simple symmetric random walk on Z2 (see exercise 0.1.1.2
for the definition). Let Sj = (Xj, Yj) denote the coordinates of Sj and define Zl = X2

l + Y 2
l .

Is Zl a Markov chain? Prove your answer. (Hint - You may use the fact that an integer
may have more than one essentially distinct representation as a sum of squares, e.g., 25 =
52 + 0 = 42 + 32.)
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0.1.2 Classification of States

The first step in understanding the behavior of Markov chains is to classify the states. We
say state j is accessible from state i if it possible to make the transition from i to j is finite
units of time. This translates into P

(l)
ij > 0 for some l ≥ 0. This property is denoted by

i → j. If j is accessible from i and i is accessible from j then we say i and j communicate.
In case i and j communicate we write i ↔ j. Communication of states is an equivalence
relation which means

1. i ↔ i. This is valid since P ◦ = I.

2. i ↔ j implies j ↔ i. This follows from the definition of communicate.

3. If i ↔ j and j ↔ k, then i ↔ k. To prove this note that the hypothesis implies
P

(r)
ij > 0 and P

(s)
jk > 0 for some integers r, s ≥ 0. Then P

(r+s)
ik ≥ P

(r)
ij P

(s)
jk > 0 proving

k is accessible from i. Similarly i is accessible from k.

To classify the states we group them together according to the equivalence relation ↔ (com-
munication).

Example 0.1.2.1 Let the transition matrix of a Markov chain be of the form

P =

(
P1 0
0 P2

)
where P1 and P2 are n× n and m×m matrices. It is clear that none of the states i ≤ n is
accessible from any of the states n + 1, n + 2, · · · , n + m, and vice versa. If the matrix of a
finite state Markov chain is of the form

P =

(
P1 Q
0 P2

)
,

then none of the states i ≤ n is accessible from any of the states n + 1, n + 2, · · · , n + m,
however, whether a state j ≥ n + 1 is accessible from a state i ≤ n depends on the matrices
P1, P2 and Q. ♠

For a state i let d(i) denote the greatest common divisor (gcd) of all integers l ≥ 1 such

that P
(l)
ii > 0. If P

(l)
ii = 0 for all l ≥ 1, then we set d(i) = 0. If d(i) = 1 then we say state i
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is aperiodic. If d(i) ≥ 2 then we say state i is periodic with period d(i). A simple example
of a Markov chain where every state has period n is given by the n× n transition matrix

P =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


The process represented by this matrix is deterministic not probabilistic since it means that
with the passage of each unit of time the transitions

1 → 2, 2 → 3, · · · , n− 1 → n, n → 1

take place with probability 1. Although this example is somewhat artificial, yet one should
keep such chains in mind. A more realistic example of a periodic Markov chain (i.e., every
state is periodic) is given by the following example:

Example 0.1.2.2 Consider a simple random walk on Z/n with n = 2m an even integer,
i.e., assume the random variable Y of the definition of general random walk on Z/n has
density function

P [Y = 1] = p > 0, P [Y = n− 1] = q = 1− p > 0.

Looking at this random walk as taking place on the points e
2πij

n on the unit circle, we see
that it describes the evolution of a system where after passage of each unit of time it moves
counterclockwise one unit with probability p and clockwise with probability q = 1−p. Since
both p and q are positive and n is even, every state is periodic with period 2. In fact,
assuming X◦ = 0, X2l ∈ {0, 2, · · · , 2m} and X2l−1 ∈ {1, 3, · · · , 2m− 1}. If n were odd, then
every state would be aperiodic. It is also clear that every state communicates with every
other state. The same conclusions are valid for a simple random walk on Zm. ♠

The relationship between periodicity and communication is described by the following
lemma:

Lemma 0.1.2.1 If i ↔ j, then d(i) = d(j).
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Proof - Let m, l and r be such that

P
(m)
ij > 0, P

(l)
ji > 0, P

(r)
ii > 0.

Then

P
(l+m)
jj > 0, P

(l+r+m)
jj > 0.

Since d(j) is the gcd of all k such that P
(k)
jj > 0, d(j) divides l+m, l+r+m and consequently

d(j)|(l + r + m−m− l) = r. From d(j)|r it follows that d(j)|d(i). Because of the symmetry
between i and j, d(i)|d(j), and so d(i) = d(j) as required. ♣

To further elaborate on the states of a Markov chain we introduce the notion of first
hitting or passage time Tij which is a function (or random variable) on the probability space
Ω with values in N. To each ω ∈ Ω, which as we explained earlier, is a path or sequence

ω = ik1k2 · · · , Tij, assigns the smallest positive integer l ≥ 1 such that ω(l)
def
= kl = j. We

also set

F l
ij = P [Tij = l] = P [Xl = j, Xl−1 6= j, · · · , X1 6= j | X◦ = i].

The quantity

Fij =
∞∑
l=1

F l
ij

is the probability that at some point in time the Markov chain will visit or hit state j given
that it started in state i. A state i is called recurrent if Fii = 1; otherwise it is called
transient. The relationship between recurrence and communication is given by the following
lemma:

Lemma 0.1.2.2 If i ↔ j, and i is recurrent, then so is j.

Proof - Another proof of this lemma will be given shortly. Here we prove it using only the
idea of paths. Let l be the smallest integer such that P

(l)
ij > 0. Therefore the set of paths Γl

ij

which at time 0 are at i and at time l are at j has probability P
(l)
ij > 0. By the minimality

of l and Markov property, the paths in Γl
ij do not return to i before hitting j. If j were not

recurrent then a subset Γ′ ⊂ Γl
ij of positive probability will never return to j. But then this

subset cannot return to i either since otherwise a fraction of positive probability of it will
return to j. Therefore the paths in Γl

ij do not return to i which contradicts the recurrence
of i. ♣

A subset C ⊂ S is called irreducible if all states in C communicate. C is called closed if
no state outside of C is accessible from any state in C. A simple and basic result about the
classification of states of a Markov chain is
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Proposition 0.1.2.1 The state space of a Markov chain admits of the decomposition

S = T ∪ C1 ∪ C2 ∪ · · · ,

where T is the set of transient states, and each Ci is an irreducible closed set consisting of
recurrent states.

Proof - Let C ⊂ S denote the set of recurrent states and T be the complement of C. In
view of lemma 0.1.2.2 states in T and C do not communicate. Decompose C into equivalence
classes C1, C2, · · · according to ↔ so that each Ca is irreducible, i.e., all states within each
Ca communicate with each other. It remains to show no state in Cb or T is accessible from
any state in Ca for a 6= b. Assume i → j with i ∈ Ca and j ∈ Cb (or j ∈ T ), then P

(l)
ij > 0

for some l, and let l be the smallest such integer. Since by assumption j 6→ i then P
(m)
ji = 0

for all m, that is, there are no paths from state j back to state i, and it follows that

∞∑
k=1

F k
ii ≤ 1− P

(l)
ij < 1,

contradicting recurrence of i. ♣
Next we turn our attention to Markov chains. Let X◦, X1, · · · be a Markov chain and

for convenience let Z+ be the state space. Recall that the random variable Tij is the first
hitting time of state j given that the Markov chain is in state i at time l = 0. The density
function of Tij is F l

ij = P [Tij = l]. Naturally we define the generating function for Tij as

Fij =
∞∑
l=1

F l
ijξ

l.

Note that the summation starts at l = 1 not 0. We also define the generating function

Pij =
∞∑
l=0

P
(l)
ij ξl.

These infinite series converge for |ξ| < 1. Much of the theory of Markov chains that we
develop is based on the exploitation of the relation between the generating functions P?

and F? as given by the following theorem whose validity and proof depends strongly on the
Markov property:

Theorem 0.1.2.1 The following identities are valid:

FiiPii = Pii − 1, Pij = FijPjj for i 6= j.
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Proof - The coefficients of ξm in Pij and in FijPjj are

P
(m)
ij , and

m∑
k=1

F k
ijP

(m−k)
jj

respectively. The set of paths that start at i at time l = 0 and are in state j at time l = m
is the disjoint union (as k varies) of the paths starting at i at time l = 0, hitting state j for
the first time at time k ≤ m and returning to state j after m − k units of time. Therefore
P

(m)
ij =

∑
k F k

ijP
(m−k)
jj proving the second identity. Noting that the lowest power of ξ in Pii

is zero, while the lowest power of ξ in Fii is 1, one proves the first identity similarly. ♣
The following corollaries point to the significance of proposition 0.1.2.1:

Corollary 0.1.2.1 A state i is recurrent if and only if
∑

l P
(l)
ii = ∞. Equivalently, a state

k is transient if and only if
∑

l P
(l)
kk < ∞.

Proof - From the first identity of proposition 0.1.2.1 we obtain

Pii(ξ) =
1

1− Fii(ξ)
,

from which the required result follows by taking the lim ξ → 1−. ♣

Remark 0.1.2.1 In the proof of corollary 0.1.2.1, the evaluation of lim ξ → 1− requires
justification since the series for Fii(ξ) and Pii(ξ) may be divergent for ξ = 1. According to a
theorem of analysis (due to Abel) if a power series

∑
cjξ

j converges for |ξ| < 1 and cj ≥ 0,
then

lim
ξ→1−

∞∑
j=◦

cjξ
j = lim

n→∞

n∑
j=◦

cj =
∞∑

j=◦

cj,

where we allow ∞ as a limit. This result removes any technical objection to the proof of
corollary 0.1.2.1. Note the assumption cj ≥ 0 is essential. For example, substituting x = 1
in 1

1+x
=

∑
(−1)nxn, valid for |x| < 1, we obtain

1

2
= 1− 1 + 1− 1 + 1− 1 + · · · ,

which is absurd in the ordinary sense of convergence of series. ♥

Corollary 0.1.2.2 If i is a recurrent state and i ↔ j, then j is recurrent.
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Proof - By assumption

P
(k)
ij > 0, P

(m)
ji > 0

for some k and m. Therefore∑
l

P
(l)
jj ≥

∑
r

P
(k+r+m)
jj ≥ P

(m)
ji P

(k)
ij

∑
r

P
(r)
ii = ∞,

which proves the assertion by corollary 0.1.2.1. ♣
We use corollary 0.1.2.1 to show that, in a sense which will be made precise shortly,

a transient state is visited only finitely many times with probability 1. It is important
to understand clearly the sense in which this statement is true. Let X◦, X1, X2, · · · be a
Markov chain with state space Z+, X◦ = 0 and 0 a transient state. Let Ω be the underlying
probability space and Ω◦ be the subset consisting of all ω = 0k1k2 · · · such that kl = 0 for
infinitely many l’s. Let Ω(m) ⊂ Ω be subset of ω = 0k1k2 · · · such that km = 0. The key
observation is proving that the subset Ω◦ has probability 0 is the identity of sets

Ω◦ =
∞⋂
l=1

∞⋃
m=l

Ω(m). (0.1.2.1)

To understand this identity let Al = ∪∞m=lΩ
(m), then Al ⊃ Al+1 ⊃ · · · and each Al contains

all paths which visit 0 infinitely often. Therefore their intersection contains all paths that
visit 0 infinitely often. On the other hand, if a path ω visits 0 only finitely many times then
for some N and all l ≥ N , ω 6∈ Al and consequently ω 6∈ ∩Al. This proves (0.1.2.1). Now

since 0 is transient
∑

l P
(l)
◦◦ < ∞ which implies

P [∪∞m=lΩ
(m)] ≤

∞∑
m=l

P (m)
◦◦ −→ 0 (0.1.2.2)

as l →∞. It follows from (0.1.2.1) that

Corollary 0.1.2.3 With the above notation and hypotheses, P [Ω◦] = 0.

In other words, corollary 0.1.2.3 shows that while the set of paths starting at a transient
state 0 and visiting it infinitely often is not necessarily empty, yet it has probability zero.

Remark 0.1.2.2 In an infinite state Markov chain the set of paths visiting a given transient
state at least m times may have positive probability for every m. It is shown later that if
p 6= 1

2
then for the simple random walk on Z every state is transient. It is a simple matter

to see that if in addition p 6= 0, 1 then the probability of at least m visits to any given state
is positive for every fixed m < ∞. ♥
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EXERCISES

Exercise 0.1.2.1 Consider a n × n chess board and a knight which from any position can
move to all other legitimate positions (according to the rules of chess) with equal probabilities.
Make a Markov chain out of the positions of the knight. What is the decomposition in
proposition 0.1.2.1 in cases n = 3 and n = 8?

Exercise 0.1.2.2 Let i and j be distinct states and l be the smallest integer such that P
(l)
ij >

0 (which we assume exists). Show that

l∑
k=1

F
(k)
ii ≤ 1− P

(l)
ij .

Exercise 0.1.2.3 Consider the Markov chain specified by the following matrix:
9
10

1
20

0 1
20

0
0 3

4
1
4

0 0
0 4

5
1
5

0
0 0 0 3

4
1
4

0 0 0 3
4

1
4


Draw a directed graph with a vertex representing a state, and arrows representing possible
transitions. Determine the decomposition in proposition 0.1.2.1 for this Markov chain

Exercise 0.1.2.4 The transition matrix of a Markov chain is

(
p 1− p

1− q q

)
, where 0 ≤

p, q ≤ 1. Classify the states of two state Markov chains according to the values of p and q.

Exercise 0.1.2.5 Number the states of a finite state Markov chain according to the decom-
position of proposition 0.1.2.1, that is, 1, 2, · · · , n1 ∈ T , n1 + 1, · · · , n2 ∈ C1, etc. What
general form can the transition matrix P have?

Exercise 0.1.2.6 Show that a finite state Markov chain has at least one recurrent state.

Exercise 0.1.2.7 For an integer m ≥ 2 let m = akak−1 · · · a1a◦ denote its expansion in base
10. Let 0 < p < 1, q = 1 − p, and Z≥2 = {2, 3, 4, · · · } be the set of integers ≥ 2. Consider
the Markov chain with state space Z≥2 defined by the following rule:

m −→

{
max(2, a2

k + a2
k−1 + · · ·+ a2

1 + a2
◦) withprobability p;

2 withprobability q.
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Let X◦ be any distribution on Z≥2. Show that

C = {2, 4, 16, 20, 37, 42, 58, 89, 145}

is an irreducible closed set consisting of recurrent states, and every state j 6∈ C is transient.

Exercise 0.1.2.8 We use the notation and hypotheses of exercise 0.1.2.7 except for changing
the rule defining the Markov chain as follows:

m −→

{
max(2, a2

k + a2
k−1 + · · ·+ a2

1 + a2
◦) withprobability p;

max(2, ak + ak−1 + · · ·+ a1 + a◦) withprobabilityq.

Determine the transient and recurrent states and implement the conclusion of proposition
0.1.2.1.

Exercise 0.1.2.9 Consider the two state Markov chain {Xn} with transition matrix(
p 1− p

1− q q

)
where 0 < p, q < 1. Let Tij denote the first passage/hitting time of state j given that we are
in state i and µij be its expectation. Compute µij by

1. Using the density function for the random variable Tij;

2. Conditioning, i.e., using the relation E[E[X|Y ]] = E[X].

Exercise 0.1.2.10 Consider the Markov chain with transition matrix1
3

1
3

1
3

1
4

3
4

0
0 0 1


Let Tij denote the first passage/hitting time of state j given that we are in state i. Compute
P [T12 < ∞] and P [T11 < ∞]. What are the expectations of T12 and T11?

Exercise 0.1.2.11 Let P denote the transition matrix of a finite aperiodic irreducible Markov
chain. Show that for some n all entries of P n are positive.
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0.1.3 Stationary Distribution

It was noted earlier that one of the goals of the theory of Markov chains is to establish that
under certain hypotheses, the distribution of states tends to a limiting distribution. If indeed
this is the case then there is a row vector π = (π1, π2, · · · ) with πj ≥ 0 and

∑
πj = 1, such

that π(◦)P n → π as n → ∞. Here π(◦) denotes the initial distribution. If such π exists,
then it has the property πP = π. For this reason we define the stationary or equilibrium
distribution of a Markov chain with transition matrix P (possibly infinite matrix) as a row
vector π = (π1, π2, · · · ) such that

πP = π, with πj ≥ 0, and
∞∑

j=1

πj = 1. (0.1.3.1)

The existence of such a vector π does not imply that the distribution of states of the Markov
chain necessarily tends to π as shown by the following example:

Example 0.1.3.1 Consider the Markov chain given by the 3 × 3 transition matrix P =0 1 0
0 0 1
1 0 0

. Then for π(◦) = (1, 0, 0) the Markov chain moves between the states 1, 2, 3

periodically. On the other hand, for π(◦) = (1
3
, 1

3
, 1

3
) π(◦)P = π(◦). So for periodic Markov

chains, stationary distribution has no implication about a limiting distribution. This exam-
ples easily generalizes to n× n matrices. Another case to keep in mind when the matrix P

admits of a decomposition P =

(
P1 0
0 P2

)
. Each Pj is necessarily a stochastic matrix, and

if π(j) is a stationary distribution for Pj, then (tπ(1), (1− t)π(2)) is one for P , for 0 ≤ t ≤ 1.
Thus the long term behavior of this chain depends on the initial distribution. ♠

Our goal is to identify a set of hypotheses which imply the existence and uniqueness of
the stationary distribution π and such that the long term behavior of the Markov chain is
accurately represented by π. To do so we first discuss the issue of the existence of solution
to (0.1.3.1) for a finite state Markov chain. Let 1 denote the column vector of all 1’s, then
P1 = 1 and 1 is an eigenvalue of P . This implies the existence of a row vector v = (v1, · · · , vn)
such that vP = v, however, a priori there is no guarantee that the eigenvector v can be chosen
such that all its components vj ≥ 0. Therefore we approach the problem differently. The
existence of π satisfying (0.1.3.1) follows from a very general theorem with a simple statement
and diverse applications and generalizations. We state the theorem without proof since its
proof has no relevance to stochastic processes.
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Theorem 0.1.3.1 (Brouwer Fixed Point Theorem) - Let K ⊂ Rn be a convex compact2 set,
and F : K → K be a continuous map. Then there is x ∈ K such that F (x) = x.

Note that only continuity of F is required for the validity of the theorem although we
apply it for F linear. To prove existence of π we let

K = {(x1, · · · , xn) ∈ Rn |
∑

xj = 1, xj ≥ 0}.

Then K is a compact convex set and let F be the mapping v → vP . The fact that P is a
stochastic matrix implies that P maps K to itself. In fact, for v ∈ K let w = (w1, · · · , wn) =
vP , then wj ≥ 0 and∑

i wi =
∑

i,j vjPji

=
∑

j vj

∑
i Pij

=
∑

j vj

= 1,
proving w ∈ K. Therefore Brouwer’s Fixed Point Theorem is applicable to ensure existence
of π for a finite state Markov chain.

In order to give a probabilistic meaning to the entries πj of the stationary distribution
π, we recall some notation. For states i 6= j let Tij be the random variable of first hitting
time of j starting at i. Denote its expectation by µij. If i = k then denote the expectation
of first return time to i by µi and define µii = 0.

Proposition 0.1.3.1 Assume a solution to (0.1.3.1) exists for the Markov chain defined by
the (possibly infinite) matrix P , and furthermore

µij < ∞, µj < ∞ for all i, j.

Then πiµi = 1 for all i.

Proof - For i 6= j we have
µij = E[E[Tij | X1]]

= 1 +
∑

k Pikµkj,
and

µj = 1 +
∑

k

Pjkµkj.

2A closed and bounded subset of Rn is called compact. KıRn is convex if for x, y ∈ K the line segment
tx + (1− t)y, 0 ≤ t ≤ 1, lies in K. The assumption of convexity can be relaxed but compactness is essential.
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The two equations can be written simply as

µij + δijµj = 1 +
∑

k

Pikµkj, where δij =

{
1 if i = j ;

0 otherwise.
(0.1.3.2)

Multiplying (0.1.3.2) by πi and summing over i (j is fixed) we obtain∑
i πiµij +

∑
i πiδijµj = 1 +

∑
i

∑
k πiPikµkj

= 1 +
∑

k πkµkj.
Cancelling

∑
i πiµij from both sides we get the desired result. ♣

The proposition in particular implies that if the quantities µij and µj are finite, then

a stationary distribution, if exists, is necessarily unique. Clearly if P =

(
P1 0
0 P2

)
then

some of the quantities µij will be infinite. Since for finite Markov chains, the existence of a
solution to (0.1.3.1) has already been established, the main question is the determination of
finiteness of µik and µk and when the stationary distribution reflects the long term behavior
of the Markov chain.

According to Proposition 0.1.3.1 the stationary distribution π = (π1, π2, . . .) depends
only on µi’s. Therefore it is reasonable to inquire when we can remove the assumption
µij < ∞ from the hypotheses of the proposition and only retain µi < ∞. The following
lemma answers this question:

Lemma 0.1.3.1 Assume the Markov chain X◦, X1, X2, . . . is irreducible. Then µi < ∞ for
all states i implies µji < ∞ for all states i, j.

Proof - Fix states i and j and decompose the underlying probability space Ω into

Ω = Ωi ∪ Ωj, disjoint union,

where Ωi is the set of paths that return to i without hitting j and Ωj is its complement, i.e.,
the set of paths that visit j prior to return to i. Define

T ′
i (ω) = IjTi,

where Ij is the indicator function of the set Ωj. Clearly E[T ′
i ] ≤ E[Ti] < ∞. Consequently

E[T ′
i ] = E[E[T ′

i |Tij]] =
∑

l

P [Tij = l](l + E[Tji])

is finite. By irreducibility P [Tij = l] > 0 for some l and therefore E[Tji] < ∞. ♣
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To understand the long term behavior of the Markov chain, we show that under certain
hypotheses the entries of the matrix P l have limiting values

lim
l→∞

P
(l)
ij = pj. (0.1.3.3)

Notice that the value pj is independent of i so the matrix P l tends to a matrix P∞ with the
same entry pj along jth column. This implies that if the initial distribution is any vector
π◦ = (π◦1, π

◦
2, · · · , π◦N) then

π◦P∞ = (p1, · · · , pN).

Therefore the long term behavior of the Markov chain is accurately reflected in the vector
(p1, · · · , pN) and pj = πj.

The class of Markov chains for which we prove limiting behavior is that of finite state,
aperiodic and irreducible. It is clear that without the assumptions of irreducibility and
aperiodicity the theorem below is not valid. The issue of finiteness is more subtle. If the
transition matrix P of a Markov chain has the property that all entries of P l for some l are
positive, then we say P or the Markov chain is regular. It is a simple argument that regular
finite state regular Markov chains are aperiodic and irreducible and conversely (see Corollary
0.1.3.1 below). We prove the following theorem:

Theorem 0.1.3.2 Let P be the transition matrix of a finite state aperiodic and irreducible
Markov chain. Then

lim
l→∞

P
(l)
ij = πj.

The proof of Theorem 0.1.3.2 requires some preparation. First we need to introduce the
notion of coupling.

Given two Markov chains X◦, X1, X2, . . . and Y◦, Y1, Y2, . . . with the state spaces S and
transition probabilities P = (Pij) and Q = (Qab) we define the product Markov chain as one
with state space S×T and transition probability from (i, a) to (j, b) given by PijQab. In other
words, the product chain is given by the sequence of random variables (X◦, Y◦), (X1, Y1), . . .
with each coordinate evolving in time independently of the other. Now assume X◦, X1, X2, . . .
and Y◦, Y1, Y2, . . . are the same Markov chain except that their initial distributions X◦ and
Y◦ may be different. In particular the two Markov chains have the same matrix of transition
probabilities P . The coupled chain is, by definition, the Markov chain with state space S×S
but with transitions defined by the following rule:

P(a,b)(c,d) =


PacPbd if a 6= b;

Pac if a = b and c = d;

0 if a = b and c 6= d.
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Thus if the coupled chain (Xj, Yj) enters the set D = {(a, a) | a ∈ S} at time l then in all
subsequent times it will be in D. One often refers to D as the diagonal. The reason the idea
of coupling is useful is that if we know the development of a Markov chain for one initial
distribution (for example, for Yj), and if we know that the two chains merge, then we can
deduce the long term term behavior of Xj.

The argument leading to the proof of the existence of liml P
l relies on the following facts:

• For the coupled chain the state space has the decomposition S × S = T ∪ D where
T , the set of transient states, consists of non-diagonal states (a, b), (a 6= b), D, the
diagonal states, is precisely is the set of recurrent states, and with probability 1 every
path enters D.

It is clear from the irreducibility all states in D communicate. The notion of aperiodicity
(i.e., d(i) = 1) plays an important role in the theory of Markov chains. There is a basic fact
from elementary number theory which relates aperiodicity to the theory of Markov chains,
namely

Lemma 0.1.3.2 Let l1, l2, . . . be positive integers with gcd= 1. Then there is an integer L
such that for all l ≥ L there are non-negative integers α1, α2, . . . such that

l = α1l1 + α2l2 + . . .

The proof of this lemma is elementary and irrelevant to to our context and is therefore
omitted. Applications of this lemma will be given shortly.

Lemma 0.1.3.3 With the above notation and hypotheses, for every (a, b) ∈ T the set of
paths starting at (a, b) and terminating in (a, a) has positive probability.

Proof - Since the Markov chain X◦, X1, . . . is irreducible, there is m such that P
(m)
ba > 0.

Aperiodicity of the Markov chain and Lemma 0.1.3.2 imply the existence of L such that for
all l ≥ L we have l =

∑
αjlj, αj ≥ 0, and

P (l)
aa ≥ P (α1l1)

aa P (α2l2)
aa . . . > 0

Therefore for all l, l′ ≥ L we have

P (l)
aa > 0, P

(m+l′)
ba > 0.

The required result follows. ♣

Lemma 0.1.3.4 With the above notation and hypotheses, non-diagonal states are transient.
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Proof - Let (a, b) ∈ T . It follows from Lemma 0.1.3.3 that there is a smallest positive integer
l such that the set of paths Ω′

ab of length l starting at (a, b) and terminating in D has positive
probability. Paths in Ω′

ab do not visit (a, b) since the minimality assumption on l precludes
the possibility of visiting (a, b) prior to hitting D and once a path enters D it never leaves
it. This implies (a, b) is necessarily transient. ♣

To complete the proof of • recall that in a finite state Markov chain there is a recurrent
state and by the irreducibility hypothesis all states are recurrent. Therefore the diagonal is
precisely the set of recurrent states. A transient state is visited only finitely many times with
probability 1. Therefore the set of paths that eventually enter the diagonal has probability
1.

The above argument also implies the following general fact:

Corollary 0.1.3.1 The transition matrix of a finite state, aperiodic and irreducible Markov
chain is regular.

Proof - By aperiodicity P
(l)
aa > 0 for all sufficiently large and P

(m)
ab > 0 for some m. Therefore

P (m + l)ab > 0 for all l sufficiently large. ♣
Proof of Theorem 0.1.3.2 - Consider the coupled chain (Xj, Yj) where we assume that
the initial distribution X◦ = i and Y◦ = (π1, · · · , πN). Let T denote the first hitting time of
D. In view of lemma •, with probability 1 paths of the coupled chain enter D. We have

|P (l)
ij − πj| = |P [Xl = j]− P [Yl = j]|

≤ |P [Xl = j, T ≤ l]− P [Yl = j, T ≤ l]|+
|P [Xl = j, T > l]− P [Yl = j, T > l]|.

Since with probability 1 paths enter D, for every ε > 0 we have P [T > l] < ε for l sufficiently
large. For such l we therefore have

|P [Xl = j, T > l]− P [Yl = j, T > l]| < ε.

On the other hand the events {Xl = j, T ≤ l} and {Yl = j, T ≤ l} at both identical with
the event {Xl = j, Yl = j} and therefore

P [Xl = j, T ≤ l]− P [Yl = j, T ≤ l] = 0.

Therefore for l sufficiently large |P (l)
ij − πj| < ε. ♣

We have shown that the stationary distribution exists for regular finite state Markov
chains and the entries of the stationary distribution are the reciprocals of the expected
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return times to the corresponding states. We can in fact get more information from the
stationary distribution. For example, assume the Markov chain X◦, X1, . . . has a unique
stationary distribution (e.g. hypothesis of Proposition ?? are fulfilled). For states a and i
let Ri(a) be the number of visits to state i before first return to a given that initially the
Markov chain was in state a. Ri(a) is a random variable and we let

ρi(a) = E[Ri(a)].

We want to calculate ρi(a). Observe

Lemma 0.1.3.5 We have

ρi(a) =
∞∑
l=1

P [Xl = i, Ta ≥ l | X◦ = a]

where Ta is the first return time to state a.

Proof - Let Ω(l) denote the set of paths which are in state i at time l, and first return to a
occurs at time l′ > l. Define the random variable Il by

Il(ω) =

{
1 if ω ∈ Ω(l);

0 otherwise.

Then Ri(a) =
∑∞

l=1 Il. Conequently,

ρi(a) =
∞∑
l=1

E[Il] =
∞∑
l=1

P [Xl = i, Ta ≥ l | X◦ = a]

as required. ♣
It is clear that

P [X1 = i, Ta ≥ 1 | X◦ = a] = Pai.

For l ≥ 2 we use conditional probability
P [Xl = i, Ta ≥ l | X◦ = a] =

∑
j 6=a P [Xl = i, Ta ≥ l, Xl−1 = j | X◦ = a]

=
∑

j 6=a P [Xl = i | Ta ≥ l, Xl−1 = j, X◦ = a].

P [Ta ≥ l − 1, Xl−1 = j | X◦ = a]
=

∑
j 6=a PjiP [Ta ≥ l − 1, Xl−1 = j | X◦ = a].

Substituting in lemma 0.1.3.5 and noting ρa(a) = 1 we obtain
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ρi(a) = Pai +
∑

j 6=a Pji

∑
l≥2 P [Xl−1 = j, Ta ≥ l − 1 | X◦ = a]

= Pai +
∑

j 6=a ρj(a)Pji

=
∑

ρj(a)Pji,
where the last summation is over all j including j = a. This means the vector ρ =
(ρ1(a), ρ2(a), · · · ) satisfies

ρP = ρ, ρi(a) ≥ 0.

We now prove

Corollary 0.1.3.2 Assume the Markov chain has a unique stationary distribution and the
expected hitting times µi and µij are finite. Then

ρi(a) =
µa

µi

.

Proof - ρP = ρ and the hypotheses imply that ρ is a multiple of the stationary distribution.
Since ρa(a) = 1 the required result follows. ♣

In general for a Markov chain E[Ti] may be∞. In fact in the next section we will show that
while all states are recurrent for the simple symmetric random walk on Z, E[Ti] = ∞. For
a finite state aperiodic irreducible Markov chain not only the expectations, but all moments
of Ti and Tij are finite. This follows from the following proposition:

Proposition 0.1.3.2 Let X◦, X1, . . . be an irreducible, aperiodic and finite state Markov
chain3. Then for all states i, j there is γ < 1 and c such that

P [Tij > l] < cγl,

for all l. Similar statement is valid for Ti. In particular all moments of Tij and Ti exist.

The proof of Proposition 0.1.3.2 requires some preliminaries. We need some preliminary
considerations for the proof of proposition ??. The hypotheses imply that the matrix of
transition probabilities P is a regular N × N matrix. For definiteness set j = N . Define
(N − 1)× (N − 1) matrices Q(l) = (Q

(l)
ij ), where 1 ≤ i, j ≤ N − 1 by

Q
(l)
ij = P [Xl = j, TiN > l | X◦ = i].

3The assumption of aperiodicity is inessential. It is made here for simplicity of exposition. For a general
finite state Markov chain E[Tij ] may be infinite if i is recurrent and j is transient or does not communicate with
i. The modification of the statement of the theorem for general finite state Markov chains is straightforward.
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Since the indices i, j ≤ N − 1 we have Q
(1)
ij = Pij and Q(l) = (Q(1))l, or equivalently,

Q
(l)
ij =

∑
j1 6=N

∑
j2 6=N

· · ·
∑

jl−1 6=N

Pij1Pj1j2 · · ·Pjl−1N . (0.1.3.4)

We need two simple technical lemmas.

Lemma 0.1.3.6 If P is positive then there is ρ < 1 such that

N−1∑
j=1

Q
(l)
ij < ρl,

and consequently
∑∞

l=1

∑N−1
j=1 Q

(l)
ij converges.

Proof - Since P is positive

N−1∑
j=1

Pij ≤ ρ < 1

for some ρ and all i. It follows from (0.1.3.4) that

N−1∑
j=1

Q
(l)
ij ≤ ρl.

The required result follows from the convergence of a geometric series. ♣

Lemma 0.1.3.7 For a regular matrix P ,
∑N−1

j=1 Q
(l)
ij is a non-increasing function of l.

Proof - Since
∑N−1

j=1 Q
(1)
ij ≤ 1, we have

N−1∑
j=1

Q
(l+1)
ij ≤

N−1∑
k=1

Q
(l)
ik

N−1∑
j=1

Q
(1)
kj ≤

N−1∑
j=1

Q
(l)
ij .

Thus
∑N−1

j=1 Q
(l)
ij is a non-increasing function of l. ♣

Proof of proposition 0.1.3.2 Since P is regular we have

P [TiN > l] =
N−1∑
j=1

P [TiN > l, Xl = j | X◦ = i] =
N−1∑
j=1

Q
(l)
ij .
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By regularity of the Markov chain, Pm is positive for some m. Lemma 0.1.3.6 (or more

precisely its proof) implies that
∑N−1

j=1 Q
(mn)
ij < ρn < 1. By lemma 0.1.3.7 for nm ≤ l <

(n + 1)m we have

N−1∑
j=1

Q
(l)
ij ≤

N−1∑
j=1

Q
(mn)
ij < (ρ

n
L )L < λL

for some λ < 1 and we need c to take care of the first m terms. This completes the proof of
the proposition. ♣
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EXERCISES

Exercise 0.1.3.1 Consider three boxes 1,2,3 and three balls A, B, C, and the Markov chain
whose state space consists of all possible ways of assigning three balls to three boxes such that
each box contains one ball, i.e., all permutations of three objects. For definiteness, number
the states of the Markov chain as follows:

1 : ABC, 2 : BAC, 3 : ACB, 4 : CAB, 5 : BCA, 6 : CBA

A Markov chain is described by the following rule:

• A pair of boxes (23), (13) or (12) is chosen with probabilities p1, p2 and p3 respectively
(p1 + p2 + p3 = 1) and the balls in the two boxes are interchanged.

1. Exhibit the 6× 6 transition matrix P of this Markov chain.

2. Determine the recurrence, periodicity and transience of the states.

3. Show that for pj > 0 this Markov chain has a unique stationary distribution. Is the long
term behavior of this Markov chain reflected accurately in its stationary distribution?
Explain.

4. Find a permutation matrix4 S such that

SPS−1 =

(
0 Q1

Q2 0

)
,

where Qj’s are 3× 3 matrices.

Exercise 0.1.3.2 Consider the Markov chain with state space as in exercise 0.1.3.1, but
modify the rule • as follows:

• Assume pj > 0 and p1 + p2 + p3 < 1. Let q = 1− (p1 + p2 + p3) > 0. Interchange the
balls in boxes according to probabilities pj as in problem 1, and with probability q make
no change in the arrangement of balls.

1. Exhibit the 6× 6 transition matrix P of this Markov chain.

2. Determine the recurrence, periodicity and transience of the states.

4A matrix with entries 0 or 1 and exactly one 1 in every row and column is called a permutation matrix.
It is the matrix representation of permuting n letters or permuting the basis vectors.
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3. Does this Markov chain have a unique stationary distribution? Is the long term behavior
of the Markov chain accurately reflected by the stationary distribution? Explain.

Exercise 0.1.3.3 Consider ten boxes 1, · · · ,10 and ten balls A, B, · · · , J , and the Markov
chain whose state space consists of all possible ways of assigning ten balls to ten boxes such
that each box contains one ball, i.e., all permutations of ten objects. Let p1, · · · , p10 be positive
real numbers such that

∑
pj = 1, and define the transition matrix of the Markov chain by

the following rule:

• With probability pj, j = 1, · · · , 9, interchange the balls in boxes j and j + 1, and with
probability p10 make no change in the arrangement of the balls.

1. Show that this Markov chain is recurrent, aperiodic and all states communicate. (Do
not attempt to write down the transition matrix P . It is a 10!× 10! matrix.)

2. What is the unique stationary distribution of this Markov chain?

3. Show that all entries of the matrix P 45 are positive.

4. Exhibit a zero entry of the matrix P 44?

Exercise 0.1.3.4 Consider three state Markov chains X1, X2, · · · and Y1, Y2, · · · with the
same transition matrix P = (Pij). What is the transition matrix of the coupled chain
(X1, Y1), (X2, Y2), · · · ? What is the underlying probability space?

Exercise 0.1.3.5 Consider the cube with vertices at (a1, a2, a3) where aj’s assume values 0
and 1 independently. Let A = (0, 0, 0) and H = (1, 1, 1). Consider the random walk, initially
at A, which moves with probabilities p1, p2, p3 parallel to the coordinate axes.

1. Exhibit the transition matrix P of the Markov chain.

2. For π = (π1, · · · , π8), does

πP = π, πj > 0,
∑

πj = 1

have a unique solution?

3. Let Y be the random variable denoting the number of times the Markov chain hits H
before its first return to A. Show that E[Y ] = 1.

Exercise 0.1.3.6 Find a stationary distribution for the infinite state Markov chain described
of exercise 0.1.2.7. (You may want to re-number the states in a more convenient way.)
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Exercise 0.1.3.7 Consider an 8× 8 chess board and a knight which from any position can
move to all other legitimate positions (according to the rules of chess) with equal probabilities.
Make a Markov chain out of the positions of the knight (see exercise 0.1.2.1) and let P denote
its matrix of transition probabilities. Classify the states of the Markov chain determined by
P 2. From a given position compute the average time required for first return to that position.
(You may make intelligent use of the computer to solve this problem, but do not try to
simulate the moves of a knight and calculate the expected return time by averaging from the
simulated data.)

Exercise 0.1.3.8 Consider two boxes 1 and 2 containing a total N balls. After the passage
of each unit of time one ball is chosen randomly and moved to the other box. Consider the
Markov chain with state space {0, 1, 2, · · · , N} representing the number of balls in box 1.

1. What is the transition matrix of the Markov chain?

2. Determine periodicity, transience, recurrence of the Markov chain.

Exercise 0.1.3.9 Consider two boxes 1 and 2 each containing N balls. Of the 2N balls
half are black and the other half white. After passage of one unit of time one ball is cho-
sen randomly from each and interchanged. Consider the Markov chain with state space
{0, 1, 2, · · · , N} representing the number of white balls in box 1.

1. What is the transition matrix of the Markov chain?

2. Determine periodicity, transience, recurrence of the Markov chain.

3. What is the stationary distribution for this Markov chain?

Exercise 0.1.3.10 Consider the Markov chain with state space the set of integers Z and
(doubly infinite) transition matrix given by

pij =


pi ifj = i + 1;

qi if j = i− 1;

0 otherwise.

where pi, qi are positive real numbers satisfying pi + qi = 1 for all i. Show that if this Markov
chain has a stationary distribution π = (· · · , πj, · · · ), then

πj = pj−1πj−1 + qj+1πj+1.



0.1. MARKOV CHAINS 29

Now assume q◦ = 0 and the Markov chain is at origin at time 0 so that the evolution of the
system takes place entirely on the non-negative integers. Deduce that if the sum

∞∑
n=1

p1p2 · · · pn−1

q1q2 · · · qn−1qn

converges then the Markov chain has a stationary distribution.

Exercise 0.1.3.11 Let α > 0 and consider the random walk Xn on the non-negative integers
with a reflecting barrier at 0 (that is, P◦1 = 1) defined by

pi i+1 =
α

1 + α
, pi i−1 =

1

1 + α
, for i ≥ 1.

1. Find the stationary distribution of this Markov chain for α < 1.

2. Does it have a stationary distribution for α ≥ 1?

Exercise 0.1.3.12 Consider a region D of space containing N paricles. After the passage
of each unit of time, each particle has probability q of leaving region D, and assume that
k new particles enter the region D following a Poisson distribution with parameter λ. The
exit/entrance of all the particles are assumed to be indpendent. Consider the Markov chain
with state space Z+ = {0, 1, 2, · · · } representing the number of particles in the region. Com-
pute the transition matrix P for the Markov chain and show that

P
(l)
jk −→ e−

λ
q

λk

qkk!
,

as l →∞.

Exercise 0.1.3.13 Let f1, f2, · · · be a sequence of positive real numbers such that
∑

fj = 1.
Let Fn =

∑n
i=1 fi and consider the Markov chain with state space Z+ defined by the transition

matrix P = (Pij) with

Pi◦ =
fi+1

1− Fi

, Pi i+1 = 1− pi◦ =
1− Fi+1

1− Fi

for i ≥ 0. Let ql denote the probability that the Markov chain is in state 0 at time l and T◦
be the first return time to 0. Show that

1. P [T◦ = l] = fl.
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2. For l ≥ 1, ql =
∑

k fkql−k. Is this the re-statement of a familiar relation?

3. Show that if
∑

j(1 − Fj) < ∞, then the equation πP = π can be solved to obtain a
stationary distribution for the Markov chain.

4. Show that the condition
∑

j(1−Fj) < ∞ is equivalent to the finiteness of the expectation
of first return time to 0.

Exercise 0.1.3.14 Let P be the 6× 6 matrix of the Markov chain chain in exercise 0.1.3.2.
Let p1 = p2 = p3 = 2

7
and q = 1

7
. Using a computer (or otherwise) calculate the matrices P l

for l = 2, 5 and 10 and compare the result with the conclusion of theorem 0.1.3.2.

Exercise 0.1.3.15 Assume we are in the situation of exercise 0.1.3.3 except that we have
4 boxes instead of 10. Thus with probability pj, j = 1, 2, 3 the balls in boxes j and j + 1 are
interchanged, and with probability p4 no change is made. Set

p1 =
1

5
, p2 =

1

4
, p3 =

1

5
, p4 =

13

60
.

Exhibit the 24 × 24 matrix of the Markov chain. Using a computer, calculate the matrices
P l for l = 3, 6, 10 and 20 and compare the result with the conclusion of theorem 0.1.3.2.
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0.1.4 Generating Functions

Generating Functions are an important tool in probability and many other areas of math-
ematics. Some of their applications to various problems in stochastic processes will be
discussed gradually in this course. The idea of generating functions is that when we have a
number (often infinite) of related quantities, there may be a method of putting them together
and get a nice function which can be used to draw conclusions that may not have possible,
or would have been difficult, otherwise. To make this vague idea precise we introduce several
examples which demonstrate the value of generating functions. We have already seen in
the subsection ”Classification of States” that the generating functions Pij and Fij and the
relationship between them provided important implications about Markov chains.

Let X be a random variable with values in Z+ and let fX be its density function:

fX(n) = P [X = n].

The most common way to make a generating function out of the quantities fX(n) is to define

FX(ξ) =
∞∑

n=◦

fX(n)ξn = E[ξX ]. (0.1.4.1)

This infinite series converges for |ξ| < 1 since 0 ≤ fX(n) ≤ 1 and fX(n) = 0 for n < 0. The
issue of convergence of the infinite series is not a serious concern for us. FX is called the
probability generating function of the random variable X. The fact that FX(ξ) = E[ξX ] is
significant. While the individual terms fX(n) may not be easy to evaluate, in some situations
we can use our knowledge of probability, and specifically of the fundamental relation

E[E[Z | Y ]] = E[Z], (0.1.4.2)

to evaluate E[Z] directly, and then draw conclusions about the random variable X. Examples
0.1.4.2 and 0.1.4.4 are simple demonstrations of this point.

Example 0.1.4.1 Just to make sure we understand the concept let us compute FX for a
couple of simple random variables. If X is binomial with parameter (n, p) then fX(k) =(

n
k

)
pkqn−k where q = 1− p, and

FX(ξ) =
n∑

k=◦

(
n

k

)
pkqn−kξk = (q + pξ)n.

Similarly, if X is a Poisson random variable, then

fX(k) = e−λ λk

k!
.
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Consequently we obtain the expression

FX(ξ) =
∑

e−λ λk

k!
ξk = eλ(ξ−1),

for the generating function of a Poisson random variable. ♠

Let Y be another random variable with values in Z+ and let FY (η) be its probability
generating function. The joint random variable (X, Y ) takes values in Z+ × Z+ and its
density function is fX,Y (n, m) = P [X = n, Y = m]. Note that we are not assuming X and
Y are independent. The probability generating function for (X, Y ) is defined as

FX,Y (ξ, η) =
∑

n≥◦,m≥◦

fX,Y (n, m)ξnηm = E[ξXηY ].

An immediate consequence of the definition of independence of random variables is

Proposition 0.1.4.1 The random variables X and Y are independent if and only if

FX,Y (ξ, η) = FX,Y (ξ, 1)FX,Y (1, η).

An example to demonstrate the use of this proposition follows:

Example 0.1.4.2 A customer service manager receives X complaints every day and X is
a Poisson random variable with parameter λ. Of these, he/she handles Y satisfactorily and
the remaining Z unsatisfactorily. We assume that for a fixed value of X, Y is a binomial
random variable with parameter (X, p). Let us compute the probability generating function
for the joint random variable (Y, Z). We have

FY,Z(η, ζ) = E[ηY ζZ ]
= E[ηY ζX−Y ]
= E[E[ηY ζX−Y ] | X]
= E[ζXE[(η

ζ
)Y ] | X]

= E[ζX(pη
ζ

+ q)X ]

= eλ(pη+qζ−1)

= eλp(η−1)eλq(ζ−1)

= FY (η)FZ(ζ).
From elementary probability we know that random variables Y and Z are Poisson, and thus
the above calculation implies that the random variables Y and Z are independent! This is
surprising since Z = X − Y . It should be pointed out that in this example one can also
directly compute P [Y = j, Z = k] to deduce the independence of Y and Z. ♠
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Example 0.1.4.3 For future reference (see the discussion of Poisson processes) we calculate
the generating function for the trinomial random variable. The binomial random variable was
modeled as the number of H’s in n tosses of a coin where H appeared with probability p. Now
suppose we have a 3-sided die with side i appearing with probability pi, p1 + p2 + p3 = 1.
Let Xi denotes the number of times side i has appeared in n rolls of the die. Then the
probability density function for (X1, X2) is

P [X1 = k1, X2 = k2] =

(
n

k1, k2

)
pk1

1 pk2
2 pn−k1−k2

3 . (0.1.4.3)

The generating function for (X1, X2) is a function of two variables, namely,

FX1,X2(ξ, η) =
∑

P [X1 = k1, X2 = k2]ξ
k1ηk2 ,

where the summation is over all pairs of non-negative integers k1, k2 with k1 + k2 ≤ n.
Substituting from (0.1.4.3) we obtain

FX1,X2(ξ, η) = (p1ξ + p2η + p3)
n, (0.1.4.4)

for the generating function of the trinomial random variable. ♠

An important general observation about generating functions is that the moments of a
random variable X with values in Z+ can be recovered from the knowledge of the generating
function for X. In fact, we have

E[X] = (
dFX(ξ)

dξ
)ξ=1− , if P [X = ∞] = 0. (0.1.4.5)

Occasionally one naturally encounters random variables for which P [X = ∞] > 0 while the
series

∑
nP [X = n] < ∞. In such cases E[X] = ∞ for obvious reasons. If furthermore

E[X] < ∞, then

Var[X] =

[
d2FX(ξ)

dξ2
+

dFX(ξ)

dξ
−

(
dFX(ξ)

dξ

)2]
ξ=1−

. (0.1.4.6)

Another useful relation involving generating functions is∑
n

P [X > n]ξn =
1− E[ξX ]

1− ξ
. (0.1.4.7)

The identities are proven by simple and formal manipulations. For example to prove (0.1.4.7),
we expand right hand side to obtain

1− E[ξX ]

1− ξ
=

(
1−

∞∑
n=0

P [X = n]ξn

)( ∞∑
n=0

ξn

)
.
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The coefficient of ξm is on right hand side is

1−
m∑

j=0

P [X = j] = P [X > m],

proving (0.1.4.7). The coefficient P [X > n] of ξn on left hand side of (0.1.4.7) is often called
tail probabilities. We will see examples of tail probabilities later.

Example 0.1.4.4 As an application of (0.1.4.5) we consider a coin tossing experiment where
H’s appear with p and T ’s with probability q = 1 − p. Let the random variable X denote
the time of the first appearance of a sequence of m consecutive H’s. We compute E[X]
using (0.1.4.5) and by evaluating FX(ξ) = E[ξX ], and the latter calculation is carried out by
conditioning. Let HrT s be the event that first r tosses were H’s followed by s T ’s. It is clear
that for 1 ≤ j ≤ m

E[ξX | Hj−1T ] = ξjE[ξX ], E[ξX | Hm] = ξm

Therefore
E[ξX ] = E[E[ξX | Y ]]

=
∑m

j=1 qpj−1ξjE[ξX ] + pmξm.

Solving this equation for E[ξX ] we obtain

FX(ξ) = E[ξX ] =
pmξm(1− pξ)

1− ξ + qpmξm+1
. (0.1.4.8)

Using (0.1.4.5), we obtain after a simple calculation,

E[X] =
1

p
+

1

p2
+ · · ·+ 1

pm
.

Similarly we obtain

Var[X] =
1

(qpm)2
− 2m + 1

qpm
− p

q2

for the variance of X. ♠

In principle it is possible to obtain the generating function for the time of the first
appearance of any given pattern of H’s and T ’s by repeated conditioning as explained in the
preceding examples. However, it is more beneficial to introduce a more efficient machinary
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for this calculation. The idea is most clearly explained by following through an example.
Another application of this idea is given in the subsection on Patterns in Coin Tossing.

Suppose we want to compute the time of the first appearance of the pattern A, for
example, A = HHTHH. We treat H and T as non-commuting indeterminates. We let X
be the formal sum of all finite sequences (i.e., monomials in H and T ) which end with the
first appearance of the pattern A. We will doing formal algebraic operations on these formal
sums in two non-commuting variables H and T , and also introduce 0 as the zero element
which when multiplied by any quantity gives 0, and is the additive identity. In the case of
the pattern HHTHH we have

X = HHTHH + HHHTHH +

THHTHH + HHHHTHH +

HTHHTHH + THHHTHH +

TTHHTHH + . . .

Similarly let Y be the formal sum of all sequences (including the empty sequence which is
represented by 1) which do not contain the given pattern A. For instance for HHTHH we
get

Y = 1 + H + T + HH + HT + TH + TT +

. . . + HHTHT + HHTTH + . . .

There is an obvious relation between X and Y independently of the chosen pattern, namely,

1 + Y (H + T ) = X + Y. (0.1.4.9)

The verification of this identity is almost trivial and is accomplished by noting that a mono-
mial summand of X + Y of length l either contains the given pattern for the first time at
its end or does not contain it, and then looking at the first n− 1 elements of the monomial.
There is also another linear relation between X and Y which depends on the nature of the
the desired pattern. Denote a given pattern by A and let Aj (resp. Aj) denote the first j
elements of the pattern starting from right (respectively left). Thus for HHTHH we get

A1 = H, A2 = HH, A3 = THH, A4 = HTHH;
A1 = H, A2 = HH, A3 = HHT, A4 = HHTH.

Let ∆j be 0 unless Aj = Aj in which case it is 1. We obtain

Y A = S(1 + A1∆n−1 + A2∆n−2 + . . . + An−1∆1). (0.1.4.10)
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For example in this case we get

Y HHTHH = S(1 + A3HH + A4H).

Some experimentation will convince the reader that this identity is really the content of
conditioning argument involved in obtaining the generating function for the time of first
occurrence of a given pattern. At any rate its validity is easy to see. Equations (0.1.4.9) and
(0.1.4.10) give us two linear equations which we can solve easily to obtain expressions for X
and Y . Our primary interest in the expression for X. Therfore substituting for Y in (??)
from (??) we obtain

A(1−X) = X

[
A +

(
1 +

n−1∑
j=1

Aj∆j

)(
1−H − T

)]
(0.1.4.11)

which gives an expression for X. Now assume H appears with probability p and T with
probability q = 1 − p. Since X is the formal sum of all finite sequences ending in the first
appearance of the desired pattern, by substituting pξ for H and qξ for T in the expression
for X we obtained the desired probability generating function F (for the time τ of the
first appearance of the pattern A). Denoting the result of this substitution in Aj, A, . . . by
Aj(ξ), A(ξ), . . . we obtain

F(ξ) =
A(ξ)

A(ξ) +
(
1 +

∑n−1
j=1 Aj(ξ)∆n−j

)(
1− ξ

) . (0.1.4.12)

For example in this case A = HHTHH from the equations

1 + Y (T + H) = X + Y, Y HHTHH = X(1 + HHT + HHTH),

we obtain the expression

F(ξ) =
p4qξ5

p4qξ5 + (1 + p2qξ3 + p3qξ4)(1− ξ)
,

for the generating function of the time of the first appearance of HHTHH. From (0.1.4.11)
one easily obtains the expectation and variance of τ . In fact we obtain

E[τ ] =
1+

∑n−1
j=1 Aj(1)∆n−j

A(1)
, Var[τ ] = E[τ ]2 − 1+

∑n−1
j=1 (2j−1)Aj∆n−j

A(1)
. (0.1.4.13)

In principle it is possible to obtain the generating function for the time of the first
appearance of any given pattern of H’s and T ’s by repeated conditioning as explained in the
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preceding examples. However, it is more beneficial to introduce a more efficient machinary
for this calculation. The idea is most clearly explained by following through an example.
Another application of this idea is given in the subsection on Patterns in Coin Tossing.

Suppose we want to compute the time of the first appearance of the pattern A, for
example, A = HHTHH. We treat H and T as non-commuting indeterminates. We let X
be the formal sum of all finite sequences (i.e., monomials in H and T ) which end with the
first appearance of the pattern A. We will doing formal algebraic operations on these formal
sums in two non-commuting variables H and T , and also introduce 0 as the zero element
which when multiplied by any quantity gives 0, and is the additive identity. In the case of
the pattern HHTHH we have

X = HHTHH + HHHTHH +

THHTHH + HHHHTHH +

HTHHTHH + THHHTHH +

TTHHTHH + . . .

Similarly let Y be the formal sum of all sequences (including the empty sequence which is
represented by 1) which do not contain the given pattern A. For instance for HHTHH we
get

Y = 1 + H + T + HH + HT + TH + TT +

. . . + HHTHT + HHTTH + . . .

There is an obvious relation between X and Y independently of the chosen pattern, namely,

1 + Y (H + T ) = X + Y. (0.1.4.14)

The verification of this identity is almost trivial and is accomplished by noting that a mono-
mial summand of X + Y of length l either contains the given pattern for the first time at
its end or does not contain it, and then looking at the first n− 1 elements of the monomial.
There is also another linear relation between X and Y which depends on the nature of the
the desired pattern. Denote a given pattern by A and let Aj (resp. Aj) denote the first j
elements of the pattern starting from right (respectively left). Thus for HHTHH we get

A1 = H, A2 = HH, A3 = THH, A4 = HTHH;
A1 = H, A2 = HH, A3 = HHT, A4 = HHTH.

Let ∆j be 0 unless Aj = Aj in which case it is 1. We obtain

Y A = S(1 + A1∆n−1 + A2∆n−2 + . . . + An−1∆1). (0.1.4.15)
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For example in this case we get

Y HHTHH = S(1 + A3HH + A4H).

Some experimentation will convince the reader that this identity is really the content of
conditioning argument involved in obtaining the generating function for the time of first
occurrence of a given pattern. At any rate its validity is easy to see. Equations (0.1.4.14)
and (0.1.4.15) give us two linear equations which we can solve easily to obtain expressions
for X and Y . Our primary interest in the expression for X. Therefore substituting for Y in
(??) from (??) we obtain

A(1−X) = X

[
A +

(
1 +

n−1∑
j=1

Aj∆j

)(
1−H − T

)]
(0.1.4.16)

which gives an expression for X. Now assume H appears with probability p and T with
probability q = 1 − p. Since X is the formal sum of all finite sequences ending in the first
appearance of the desired pattern, by substituting pξ for H and qξ for T in the expression
for X we obtained the desired probability generating function F (for the time τ of the
first appearance of the pattern A). Denoting the result of this substitution in Aj, A, . . . by
Aj(ξ), A(ξ), . . . we obtain

F(ξ) =
A(ξ)

A(ξ) +
(
1 +

∑n−1
j=1 Aj(ξ)∆n−j

)(
1− ξ

) . (0.1.4.17)

For example in this case A = HHTHH from the equations

1 + Y (T + H) = X + Y, Y HHTHH = X(1 + HHT + HHTH),

we obtain the expression

F(ξ) =
p4qξ5

p4qξ5 + (1 + p2qξ3 + p3qξ4)(1− ξ)
,

for the generating function of the time of the first appearance of HHTHH. From (0.1.4.16)
one easily obtains the expectation and variance of τ . In fact we obtain

E[τ ] =
1+

∑n−1
j=1 Aj(1)∆n−j

A(1)
, Var[τ ] = E[τ ]2 − 1+

∑n−1
j=1 (2j−1)Aj∆n−j

A(1)
. (0.1.4.18)

There are elaborate mathematical techniques for obtaining information about a sequence
of quantities of which a generating function is known. Here we just demonstrate how by
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a simple argument we can often deduce good approximation to a sequence of quantities qn

provided the generating function Q(ξ) =
∑

n qnξ
n is a rational function

Q(ξ) =
U(ξ)

V (ξ)
,

with deg U < deg V . For simplicity we further assume that the polynomial V has distinct
roots α1, · · · , αm so that Q(ξ) has a partial fraction expansion

Q(ξ) =
m∑

j=1

bj

ξ − αj

, with bj =
−U(αj)

V ′(ξj)
.

Expanding 1
αj−ξ

in a geometric series

1

αj − ξ
=

1

αj

1

1− ξ
αj

=
1

αj

[1 +
ξ

αj

+
ξ2

α2
j

+ · · · ]

we obtain the following expression for qn:

qn =
b1

αn+1
1

+
b2

αn+1
2

+ · · ·+ bm

αn+1
m

(0.1.4.19)

To see how (0.1.4.19) can be used to give good approximations to the actual values of qn’s,
assume |α1| < |αj| for j 6= 1. Then we use the approximation qn ∼ b1

αn+1
1

.

Example 0.1.4.5 To illustrate the above idea of using partial fractions consider example
0.1.4.4 above. We can write the generating function (0.1.4.8) for the time of first appearance
of pattern of m consecutive H’s in the form

FX(ξ) =
pmξm

1− qξ(1 + pξ + · · ·+ pm−1ξm−1)
.

Denoting the denominator by Q(ξ), we note that Q(1) > 0, limξ→∞ Q(ξ) = −∞ and Q is a
decreasing function of ξ ∈ R+. Therefore Q has a unique positive root α > 1. If γ ∈ C with
|γ| ≤ α, then

|qγ(1 + pγ + · · ·+ pm−1γm−1)| ≤ |qα(1 + pα + · · ·+ pm−1αm−1)| = 1,

with = only if all the terms have the same argument and |γ| = α. It follows that α is the
root of Q(ξ) = 0 with smallest absolute value. Applying the procedure described above we
obtain the approximation

Fl ∼
(α− 1)(1− pα)

(m + 1−mα)q
α−l−1,
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where Fl is the probability that first of pattern H · · ·H is at time l so that FX(ξ) =
∑

Flξ
l.

This is a good approximation. For instance for m = 2 and p = 1
2

we have F5 = .09375 and
the above approximation gives F5 ∼ .09579, and the approximation improves as l increases.
♠

For a sequence of real numbers {fj}j≥◦ satisfying a linear recursion relation, for example,

αfj+1 + βfj + γfj−1 = 0, (0.1.4.20)

it is straighforward to explicitly compute the generating function F(ξ). In fact, it follows
from (0.1.4.20) that

αF(ξ) + βξF(ξ) + γξ2F(ξ) = αf◦ + (αf1 + βf◦)ξ.

Solving this equation for F we obtain

F(ξ) =
αf◦ + (αf1 + βf◦)ξ

α + βξ + γξ2
. (0.1.4.21)

Here we assumed that the coefficients α, β and γ are independent of j. It is clear that
the method of computing F(ξ) is applicable to more complex recursion relations as long as
the coefficients are independent of j. If these coefficients have simple dependence on j, e.g.,
depend linearly on j, then we can obtain a differential equation for F. To demonstrate this
the point we consider the following simple example with probabilistic implications:

Example 0.1.4.6 Assume we have the recursion relation (the probabilistic interpretation
of which is given shortly)

(j + 1)fj+1 − jfj − fj−1 = 0, j = 2, 3, · · · (0.1.4.22)

Let F(ξ) =
∑∞

j=1 fjξ
j. To compute F note

F′ = f1 + 2f2ξ + 3f3ξ
2 + · · ·

ξF′ = f1ξ + 2f2ξ
2 + · · ·

ξF = f1ξ
2 + · · ·

It follows that

(1− ξ)
dF

dξ
− ξF = f1 + (f1 + 2f2)ξ. (0.1.4.23)

As an application to probability we consider the matching problem where n balls numbered
1, 2, · · · , n are randomly put in boxes numbered 1, 2, · · · , n; one in each box. Let fn be
the probability that the numbers on balls and boxes containing them have no matches. To
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obtain a recursion relation for fj’s let Aj be the event of no matches, and Bj be the event
that the first ball is put in a box with a non-matching number. Then

fj+1 = P [Aj+1 | Bj+1]
j

j + 1
. (0.1.4.24)

On the other hand,

P [Aj+1 | Bj+1] =
1

j
fj−1 +

j − 1

j
P [Aj | Bj]. (0.1.4.25)

Equations (0.1.4.24) and (0.1.4.25) imply validity of (0.1.4.22) and (0.1.4.23) with

f1 = 0; f2 =
1

2
. (0.1.4.26)

Therefore to compute the generating function F(ξ) we have to solve the differential equation

(1− ξ)
dF

dξ
= ξF + ξ,

with F(0) = 0. Making the substitution H(ξ) = (1−ξ)F(ξ), the differential equation becomes
H ′ + H = ξ which is easily solved to yield

F(ξ) =
e−ξ

1− ξ
− 1.

Expanding as a power series, we obtain after a simple calculation

fk =
1

2!
− 1

3!
+ · · ·+ (−1)k

k!
. (0.1.4.27)

Thus for k large, the probability of no matches is approximately 1
e
. Of course one can derive

(0.1.4.27) by a more elementary (but substantially the same) argument. ♠

Example 0.1.4.7 Consider the simple random walk on the integer which moves one unit to
the right with probability p and one unit to the left with probability q = 1−p and is initially
at 0. Let pl denote the probability that the walk is at 0 at time l and P◦◦(ξ) =

∑
plξ

l denote
the corresponding generating function. It is clear that p2l+1 = 0 and

p2l =

(
2l

l

)
plql.
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Therefore

P◦◦(ξ) =
1√

1− 4pqξ2
.

Let Fl denote the probability that first return to 0 occurs at time l. It follows that theorem
0.1.2.1 that

F◦◦(ξ)
def.
=

∑
Flξ

l = 1−
√

1− 4pqξ2.

Consequently the probability of eventual return to the origin is 1− |p− q|. Let the random
variable T◦◦ be the time of the first return to the origin. Let p = q = 1

2
. Differentiating

F◦◦(ξ) with respect to ξ and setting ξ = 1 we obtain

E[T◦] = ∞.

In other words, although with probability 1 every path will return to the origin, the expecta-
tion of the time return is infinite. For p 6= q there is probability |p−q| > 0 of never returning
to the origin and therefore the expected time of return to the origin is again infinite. ♠

A consequence of the the computation of the generating function F◦◦(ξ) is the classifica-
tion of the states of the simple random walk on Z:

Corollary 0.1.4.1 For p 6= q the simple random walk on Z is transient. For p = q = 1
2
,

every state is recurrent.

Proof - the first statement follows from the fact the with probability |q − p| > 0 a path
will never return to the origin. Setting p = q = 1

2
and ξ = 1 in F◦◦(ξ) we obtain F◦◦(1) = 1

proving recurrence of 0 and therefore all states. ♣

Example 0.1.4.8 Consider the simple random walk S1, S2, · · · on Z where X◦ = 0, Xj = ±1
with probabilities p and q = 1 − p, and Sl = X◦ + X1 + · · · + Xl. Let Tn be the random
variable denoting the time of first visit to state n ∈ Z given that X◦ = 0. In this example
we investigate the generating function for Tn, namely,

F◦n(ξ) =
∞∑
l=1

P [Tn = l]ξl

be its probability generating function. It is clear that

P [Tn = l] =
l−1∑
j=1

P [Tn−1 = l − j]P [T1 = j].
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From this identity it follows that

F◦n(ξ) = [F◦1(ξ)]
n. (0.1.4.28)

which reduces the computation of F◦n to that of F◦1. It is immediate that

P [T1 = l] =

{
qP [T2 = l − 1], if l > 1;

P [T◦1 = 1] = p, if l = 1.

This together with (0.1.4.28) imply

F◦1(ξ) = pξ + qξ[F◦1(ξ)]
2.

Solving the quadratic equation we obtain

F◦1(ξ) =
1−

√
1− 4pqξ2

2qξ
. (0.1.4.29)

Substituting ξ = 1 we see that the probability that the simple random walk ever visits 1 ∈ Z
is min(1, p

q
). ♠

Example 0.1.4.9 We shown that the simple symmetric random walk on Z is recurrent and
exercise 0.1.4.11 show that the same conclusion is valid for for the simple symmetric random
walk on Z2. In this example we consider the simple symmetric random walk on Z3. To carry
out the analysis we make use of an elementary fact regarding multinomial coefficients. Let(

N
n1 n2··· nk

)
denote the multinomial coefficient(

N

n1 n2 · · · nk

)
=

N !

n1!n2! · · ·nk!
,

where N = n1 + n2 + · · · + nk and all integers nj are non-negative. Just as in the case of
binomial coefficients the maximum of

(
N

n1 n2··· nk

)
occurs when the the quantities n1, · · · , nk

are (approximately) equal. We omit the proof of this elementary fact and make use of it for
k = 3. To determine recurrence/transience of the random walk on Z3 we proceed as before

by looking at
∑

P
(l)
◦◦ . We have P

(2l+1)
◦◦ = 0 and

P (2l)
◦◦ =

∑
i+j+k=l

(
2l

i i j j k k

)
1

62l
.
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Multiplying the above expression by (l!)2

(l!)2
and simplifying we obtain

P (2l)
◦◦ =

l∑
i,j=0

(
2l

l

)
l!2

[i!j!(l − i− j)!]2
1

62l
.

To estimate this expression, we make use of the obvious fact

1 = (
1

3
+

1

3
+

1

3
)l =

l∑
i,j=0

l!

i!j!(l − i− j)!

1

3l
.

This allows us to write

P (2l)
◦◦ ≤

(
2l

l

)
1

22l

1

3l
Ml,

where

Ml = max
0≤i+j≤l

l!

i!j!(l − i− j)!
.

Using the fact that the maximum Ml is achieved for approximately i = j = l
3
, we obtain

P (2l)
◦◦ ≤ l!

[(l/3)!]322l3l

(
2l

l

)
.

Now recall Stirling’s formula

n! =
√

2πnn+ 1
2 e−neρ(n), where

1

12(n + 1
2
)

< ρ(n) <
1

12n
. (0.1.4.30)

Applying Stirling’s formula we obtain the bound∑
l

P (l)
◦◦ =

∑
l

P (2l)
◦◦ ≤ γ

∑
l

1

l3/2
< ∞,

for some constant γ. Thus 0 and therefore all states in the simple symmetric random walk
on Z3 are transient. By a similar argument, the simple symmetric random walk is transient
in dimensions ≥ 3. ♥
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EXERCISES

Exercise 0.1.4.1 Let P = (Pij) be a (possibly infinite) Markov matrix, and P l = (P
(l)
ij ).

Show that if j is a transient state then for all i we have∑
l

P
(l)
ij < ∞.

Exercise 0.1.4.2 Show that if states i and j of a Markov chain communicate and they are
recurrent, then Fij = 1, i.e., with probability 1, every path starting at i will visit j.

Exercise 0.1.4.3 Consider the Markov chain on the vertices of a square with vertices A =
(0, 0), B = (1, 0), C = (0, 1) and D = (1, 1), where one moves along an horizontal edge with
probability p and along a vertical edge with probability q = 1 − p, and is initially at A. Let
Fl denote the probability that first return to state A occurs at time l, and pl = P

(l)
AA denote

the probability that that the Markov chain is in state A at time l. Show that the generating
functions functions F(ξ) =

∑
Flξ

l and P (ξ) =
∑

plξ
l are

P (ξ) =
1

2
(

1

1− (1− 2p)2ξ2
+

1

1− ξ2
), F (ξ) =

P (ξ)− 1

P (ξ)
.

Exercise 0.1.4.4 Consider the coin tossing experiment where H’s appear with probability p
and T’s with probability q = 1 − p. Let Sn denote the number of T ’s before the appearance
of the nth H. Show that the probability generating function for Sn is

E[ξSn ] =

(
p

1− qξ

)n

.

Exercise 0.1.4.5 Consider the coin tossing experiment where H’s appear with probability p
and T’s with probability q = 1− p. Compute the probaility generating function for the time
of first appearance of the following patterns:

1. THH;

2. THHT ;

3. THTH.

Exercise 0.1.4.6 Show that the generating function for the pattern HTTHT is We can
easily solve this for E[ξT ]:

FT (ξ) = E[ξT ] =
p2q3ξ3

1 + p2q3ξ5 + pq2ξ3 − ξ − pq2ξ4
.



46

Exercise 0.1.4.7 Let an denote the number of ways an (n + 1)-sided convex polygon with
vertices P◦, P1, · · · , Pn can be decomposed into triangles by drawing non-intersecting line
segments joining the vertices.

1. Show that

an = a1an−1 + a2an−2 + · · ·+ an−1a1, with a1 = 1.

2. Let A(ξ) =
∑∞

n=1 anξ
n be the corresponding generating function. Show that A(ξ) satis-

fies the quadratic relation

A(ξ)− ξ = [A(ξ)]2.

3. Deduce that

A(ξ) =
1−

√
1− 4ξ

2
, and an =

1

n

(
2(n− 1)

n− 1

)
.

Exercise 0.1.4.8 Let qn denote the probability that in n tosses of a fair coin we do not get
the sequence HHH.

1. Use conditioning to obtain the recursion relation

qn =
1

2
qn−1 +

1

4
qn−2 +

1

8
qn−3.

2. Deduce that the generating function Q(ξ) =
∑

qjξ
j is

Q(ξ) =
2ξ2 + 4ξ + 8

−ξ3 − 2ξ2 − 4ξ + 8
.

3. Show that the root of the denominator of Q(ξ) with smallest absolute value is α1 =
1.0873778.

4. Deduce that the approximations qn ∼ 1.23684
(1.0873778)n+1 yield, for instance,

q3 ∼ .8847, q4 ∼ .8136, q12 ∼ .41626

(The actual values q3 = .875, q4 = 8125 and q12 = .41626.)
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Exercise 0.1.4.9 In a coin tossing experiment heads appear with probability p. Let An be
the event that there are an even number of heads in n trials, and an be the probability of An.
State and prove a linear relation between an and an−1, and deduce that∑

anξ
n =

1

2
(

1

1− ξ
+

1

1− (1− 2p)ξ
).

Exercise 0.1.4.10 In a coin tossing experiment heads appear with probability p and q =
1 − p. Let X denote the time of first appearance of the pattern HTH. Show that the
probability generating function for X is

FX(t) =
p2qξ3

1− t + pqξ2 − pq2ξ3
.

Exercise 0.1.4.11 Consider the random walk on Z2 where a point moves from (i, j) to any
of the points (i± 1, j), (i, j ± 1) with probability 1

4
. Show that the random walk is recurrent.

(Use the idea of example 0.1.4.9.)


