PCA III: a tool for multidimensional data exploration and a cautionary note

Data Science 101 Team
When the data has many variables

- We have seen that R automatically looks at all eigenvectors and eigenvalues and outputs many principal components.
- PC are ordered by the size of the relative eigenvalues.
- Each of them defines a linear combination of X that is orthogonal to the others, and explain a portion of the total variance

$$\sum_i \lambda_i = \text{trace}(X'X) = \sum_i \text{Var}(X_i)$$

- We have seen in the lab, that if a dataset has a true dimension that is lower than the number of variables, PCA is able to recover this.
- PCA analysis can be used to study the “dimension” of a dataset.
A “fake” 3D dataset

```r
x <- rnorm(100)
y <- rnorm(100)
z <- x * 3 + y * 3
dataset <- cbind(x, y, z)
dataset.pc <- prcomp(dataset, center = TRUE)
summary(dataset.pc)
```

```r
## Importance of components:
##                  PC1     PC2     PC3
## Standard deviation 4.2894 0.92398 5.367e-16
## Proportion of Variance 0.9557 0.04434 0.000e+00
## Cumulative Proportion 0.9557 1.00000 1.000e+00
```
library(scatterplot3d)
par(mfrow=c(1,2))
sd3<-scatterplot3d(dataset,angle=25,box=FALSE,
 pch=20,cex.lab=1.3)
sd3<-scatterplot3d(dataset,angle=120,box=FALSE,
 pch=20,cex.lab=1.3)
How our data looks in 3D

It sits on a plane!
How the data looks in the PCA coordinate system
Another example

```r
x <- rnorm(100)
y <- rnorm(100)
z <- x^2 + y^2
dataset <- cbind(x, y, z)
```

dataset.pc

Variances

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Graphs

- Scatter plot of `x` vs `y` with `z` as an extra dimension.
- Bar chart of `z` values.
http://mypersonality.org/

Thanks to M. Kosinski we have data on 10000 individuals who took the *IPIP proxy for Costa and McCrae’s NEO-PI-R domains (Five Factor Model)*

Personality theory talks about 5 traits (OCEAN)

Openness to experience describes a dimension of personality that distinguishes imaginative, creative people from down-to-earth, conventional people.

Conscientiousness concerns the way in which we control, regulate, and direct our impulses.

Extraversion is marked by pronounced engagement with the external world, versus being comfortable with your own company.

Agreeableness reflects individual differences in concern with cooperation and social harmony.

Neuroticism refers to the tendency to experience negative emotions.
The questions

The data contains answers to the first 20 questions

The questions presumably probe the different 5 dimensions as follows:

You can take the test
A quick look at the demographics

![Histogram of Age](image1)

- **Age**
 - Frequency: 0 - 5000
 - Years: 20 - 80

![Histogram of Age of Males](image2)

- **Age of males**
 - Frequency: 0 - 2000
 - Years: 20 - 80

![Histogram of Gender](image3)

- **Gender**
 - Frequency: 0 - 5000
 - Male: 0 - 5000
 - Female: 0 - 5000

![Histogram of Age of Females](image4)

- **Age of females**
 - Frequency: 0 - 2500
 - Years: 30 - 70
Principal components of the Personality questions

Variance of the principal components

Variance
Principal components

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
Coefficients of questions and their association to OCEAN
Projection of subjects onto the first 6 PCA
Looking at more than one PCA

- Because they allow to summarize data in a few dimensions, PCA are a very handy tool to visualize high dimensional data.
- How much time can you spend looking at the scatterplots of 10,000 variables? How meaningful would that be?
- It is often handy to look at the scatterplots of the first few principal components: this gives us an idea of the spread of the data, of the possible existence of clusters, or relationships
Novembre et al. (2008) Genes mirror geography within Europe, Nature

- 1387 European individuals (number of observations)
- Genotypes at 197,146 Single Nucleotide Polymorphism (number of variables)
- A genotype is here coded as a quantitative variable with values 0, 1, or 2 – corresponding to the number of copies of the more rare allele that an individual has the SNP in question.
- Each subject in the study had all 4 grandparents coming from the same country within Europe
- Plotting each subject on the coordinates of the first 2 principal components, coloring each point by the country of origin.
PCA for genetics data

- The first two principal components pretty much capture the spread of individuals across latitude and longitude.
- Routinely used in genetics to account for global genetic variation that is correlated with the population of origin.
- It is very useful to identify subjects with “outlier” genetic background (for example, askenazi jewish).
- It is tempting to use these genetic principal components to describe the population history, but one has to be somewhat careful.
Reification fallacy

- For any collection of variables, one can find the linear combination that has the maximal variance, aka the first principal component.
- Recall that in the artificial model we created for father and sons heights, the principal component did a good job at reconstructing the common element z. If multivariate data is generated in a similar fashion, the first principal component will reconstruct the underlying unmeasured factor.
- However, this is true only if there is an underlying factor.
- It is often tempting to believe that because we can calculate a first principal component, this must capture an underlying factor. But this is not the case.
- This is called reification fallacy. (from res latin for “thing”, making something real)
A book on this topics

S.J. Gould “The mismeasure of man.”