Stanford Stats 116 Final Examination

Closed book and closed notes
Duration: 180 minutes
Spring 2021

Name: \qquad
Student ID Number: \qquad

By taking this exam, you agree to be bound by the Stanford Honor Code, meaning specifically in this context that you

- will not give or receive aid in examinations;
- will do your share and take an active part in seeing to it that others as well as yourself uphold the spirit and letter of the Honor Code.

Signature:

Question F. 1 (10 points): Define any two of the following concepts: independence, covariance, conditional independence.

Question F. 2 (15 points): Assume $P(A)>0$ and $P(B)>0$. Prove or disprove:
(a) If $P(A \mid B)>P(A)$ then $P(B \mid A)>P(B)$.
(b) If $P(A)=P(B)$ then $P(A \mid C)=P(B \mid C)$ for any event C.
(c) If $P(A \mid B)=P(B \mid A)$ then $P(A)=P(B)$.

Question F. 3 (5 points): Consider a discrete uniform random variable over the set $S=$ $\{1,3,-1,-2,5,7\}$. What is $\mathbb{E}[X \mid X>0]$?

Question F. 4 (10 points): An urn contains 10 balls of which three are black and seven are white. The following game is played: At each trial a ball is selected at random, its color is noted, and it is replaced along with two additional balls of the same color. What is the probability that a black ball is selected in each of the first three trials?

Question F. 5 (10 points): Let X and Y be independent and identically distributed as Uni[0, 1]. Recall that the pdf of Uni[0,1]) is $f(x)=\mathbf{1}\{0 \leq x \leq 1\}$.
(a) What is the distribution of $-\log (X)$?
(b) What is the distribution of $\log (X Y)$? You can recall a known result from class.

Question F.6: Let $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ be independent and identically distributed with $\mathbb{E}\left[X_{1}\right]=$ $\mathbb{E}\left[Y_{1}\right]=0$ and $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(Y_{1}\right)=1$. Define $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ to be the corresponding sample averages.
(a) (5 points) Using Chebychev's inequality, what can you say about $P\left(-1 \leq \bar{X}_{n}-\bar{Y}_{n} \leq 1\right)$?
(b) (5 points) Using the central limit theorem, approximate $P\left(-1 \leq \bar{X}_{n}-\bar{Y}_{n} \leq 1\right)$ for $n=50$.

Question F. 7 (10 points): A child who doesn't want to go to school picks headache as reason with probability 0.7 and stomach-ache as reason with probability 0.3 . If she picks headache, then she misses school for Poisson(1) days, while if she picks stomach-ache, then she misses school for Poisson(2) days. The teacher observes that the child has not come to school for 2 days and tries to guess the chance that she will put in stomach-ache as reason. Help the teacher by giving this chance. Recall if $X \sim \operatorname{Poisson}(\lambda)$, then $P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k=0,1,2, \ldots$.

Question F.8: A stochastic linear dynamical system evolves according to

$$
X_{n+1}=a X_{n}+b W_{n}
$$

where $W_{n} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}(0,1)$ are called innovations, and $0 \leq a<1$ and $b \in \mathbb{R}$ are fixed constants.
(a) (5 points) If $X_{n} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$, what is the distribution of X_{n+1} ?
(b) (5 points) Give a probability distribution P so that if X_{n} has distribution P, then so does X_{n+1}. (Note that they are not independent, but they have the same distribution.)
(c) (5 points) Suppose $X_{0}=0$. Let P_{n} be the probability distribution of X_{n}. Give the limiting distribution $\lim _{n \rightarrow \infty} P_{n}$.

Question F. 9 (15 points): Consider the bivariate function

$$
f(x, y)=K \cdot(x+y) \cdot \mathbf{1}\{0 \leq x \leq 1\} \mathbf{1}\{0 \leq y \leq 1\} .
$$

(a) Find the constant K such that $f(x, y)$ is a joint probability density function.
(b) If (X, Y) has density $f(x, y)$ find the density $f_{X}(x)$ of X.
(c) Find $f_{Y \mid X}(y \mid x)$.

Question F. 10 (10 points): Recall that the pdf of $\mathbf{N}\left(\mu, \sigma^{2}\right)$ is $f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$. Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are independent normal random variables with $X_{i} \sim \mathrm{~N}\left(0, \sigma_{i}^{2}\right)$ for some $\sigma_{i}>0$ (that is, the standard deviation of X_{i} is σ_{i}). Let $Z=\sum_{i=1}^{n} X_{i}$.
(a) Compute the moment generating function (MGF) of Z.
(b) Using the Chernoff bound, show that for any $a>0$,

$$
P(Z \geq a) \leq e^{-\frac{a^{2}}{2 \sum_{i=1}^{\sigma^{2}} \sigma_{i}^{2}}}
$$

