Stanford Stats 116 Final Examination

Closed book and closed notes
Duration: 180 minutes
Spring 2021

Name:

Student ID Number:

By taking this exam, you agree to be bound by the Stanford Honor Code, meaning specifically in this context that you

- will not give or receive aid in examinations;
- will do your share and take an active part in seeing to it that others as well as yourself uphold the spirit and letter of the Honor Code.

Signature:
Question F.1 (10 points): Define any two of the following concepts: independence, covariance, conditional independence.

Question F.2 (15 points): Assume $P(A) > 0$ and $P(B) > 0$. Prove or disprove:

(a) If $P(A \mid B) > P(A)$ then $P(B \mid A) > P(B)$.

(b) If $P(A) = P(B)$ then $P(A \mid C) = P(B \mid C)$ for any event C.

(c) If $P(A \mid B) = P(B \mid A)$ then $P(A) = P(B)$.
Question F.3 (5 points): Consider a discrete uniform random variable over the set \(S = \{1, 3, -1, -2, 5, 7\} \). What is \(E[X | X > 0] \)?

Question F.4 (10 points): An urn contains 10 balls of which three are black and seven are white. The following game is played: At each trial a ball is selected at random, its color is noted, and it is replaced along with two additional balls of the same color. What is the probability that a black ball is selected in each of the first three trials?

Question F.5 (10 points): Let \(X \) and \(Y \) be independent and identically distributed as \(\text{Uni}[0, 1] \). Recall that the pdf of \(\text{Uni}[0, 1] \) is \(f(x) = 1 \{0 \leq x \leq 1\} \).

(a) What is the distribution of \(-\log(X)\)?

(b) What is the distribution of \(\log(XY)\)? You can recall a known result from class.
Question F.6: Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be independent and identically distributed with $\mathbb{E}[X_1] = \mathbb{E}[Y_1] = 0$ and $\text{Var}(X_1) = \text{Var}(Y_1) = 1$. Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i$ to be the corresponding sample averages.

(a) (5 points) Using Chebychev’s inequality, what can you say about $P(-1 \leq \bar{X}_n - \bar{Y}_n \leq 1)$?

(b) (5 points) Using the central limit theorem, approximate $P(-1 \leq \bar{X}_n - \bar{Y}_n \leq 1)$ for $n = 50$.

Question F.7 (10 points): A child who doesn’t want to go to school picks headache as reason with probability 0.7 and stomach-ache as reason with probability 0.3. If she picks headache, then she misses school for Poisson(1) days, while if she picks stomach-ache, then she misses school for Poisson(2) days. The teacher observes that the child has not come to school for 2 days and tries to guess the chance that she will put in stomach-ache as reason. Help the teacher by giving this chance. Recall if $X \sim \text{Poisson}(\lambda)$, then $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ for $k = 0, 1, 2, \ldots$.
Question F.8: A stochastic linear dynamical system evolves according to

\[X_{n+1} = aX_n + bW_n \]

where \(W_n \overset{\text{iid}}{\sim} \mathcal{N}(0, 1) \) are called innovations, and \(0 \leq a < 1 \) and \(b \in \mathbb{R} \) are fixed constants.

(a) (5 points) If \(X_n \sim \mathcal{N}(0, \sigma^2) \), what is the distribution of \(X_{n+1} \)?

(b) (5 points) Give a probability distribution \(P \) so that if \(X_n \) has distribution \(P \), then so does \(X_{n+1} \). (Note that they are not independent, but they have the same distribution.)

(c) (5 points) Suppose \(X_0 = 0 \). Let \(P_n \) be the probability distribution of \(X_n \). Give the limiting distribution \(\lim_{n \to \infty} P_n \).
Question F.9 (15 points): Consider the bivariate function

\[f(x, y) = K \cdot (x + y) \cdot 1 \{0 \leq x \leq 1\} 1 \{0 \leq y \leq 1\}. \]

(a) Find the constant \(K \) such that \(f(x, y) \) is a joint probability density function.

(b) If \((X, Y)\) has density \(f(x, y) \) find the density \(f_X(x) \) of \(X \).

(c) Find \(f_{Y \mid X}(y \mid x) \).
Question F.10 (10 points): Recall that the pdf of $N(\mu, \sigma^2)$ is $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$. Suppose that X_1, X_2, \ldots, X_n are independent normal random variables with $X_i \sim N(0, \sigma_i^2)$ for some $\sigma_i > 0$ (that is, the standard deviation of X_i is σ_i). Let $Z = \sum_{i=1}^{n} X_i$.

(a) Compute the moment generating function (MGF) of Z.

(b) Using the Chernoff bound, show that for any $a > 0$,

$$P(Z \geq a) \leq e^{-\frac{a^2}{2 \sum_{i=1}^{n} \sigma_i^2}}.$$