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Question M.1 (A combinatorial identity (10 pts)):

(a) (5 pts) Let n ≥ k ≥ i ≥ 0 be integers. Show the identity(
n

i

)
·
(
n− i

k − i

)
=

(
n

k

)
·
(
k

i

)
.

(b) (5 pts) Describe in words why the preceding identity holds.

2



Question M.2 (Counting bridge hands (17pts)): In the game of bridge, there are four play-
ers, identified by North, East, South, and West (N/E/S/W), with teams (or partnerships) of
North/South and East/West. Each player is dealt a hand of 13 cards (of 52 total cards) at random.
The deck of cards is a standard deck: there are 13 spades, 13 clubs, 13 hearts, 13 diamonds, and
the spades and clubs are black while the diamonds and hearts are red.

(a) (5 pts) How many ways (i.e., how many collections of the 26 cards dealt to N/S) are there for
the N/S partnership to have exactly 20 red cards?

(b) (5 pts) How many ways are there for N/S to have at least 20 red cards in the partnership?

(c) (5 pts) How many total ways (i.e., how many collections of 26 cards) can the N/S partnership
have?

(d) (2 pts) What is the probability that N/S has at least 20 red cards? (You do not need to
simplify).
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Question M.3 (Independence (14 pts)): Suppose we flip three (fair) coins independently, denot-
ing their outcomes by X1, X2, X3, each either H (heads) or T (tails). Define the events

A = {X1 = H}, B = {X2 = H}, C = {X3 = H},

and
D = {outcome is one of HHH,TTH,THT,HTT}.

(Here D represents the outcome of the three coins, so D = TTH means that X1 = T, X2 = T, and
X3 = H, and so on.)

(a) (5 pts) Show that A ⊥⊥ D.

(b) (5 pts) Show that the pair (A ∩B) ⊥⊥ D.

Note that we similarly have that A,B,C are independent, and that by symmetry B ⊥⊥ D, C ⊥⊥ D,
and (A ∩ C) ⊥⊥ D and (B ∩ C) ⊥⊥ D.

(c) (4 pts) Show that in spite of parts (a) and (b), the four events are not independent.
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Question M.4 (Expectations and conditioning (16 pts)): Suppose that X ∼ Geom(p), that is,
that X has p.m.f. pX(i) = P (X = i) = (1 − p)i−1p for i = 1, 2, . . .. Here we will investigate how
much “memory” X maintains about itself.

(a) (6 pts) Give P (X ≥ i).

(b) (5 pts) Give
P (X = k + i | X ≥ i).

What is the relationship of this quantity to P (X = k)?

(c) (5 pts) Suppose your iPod has n songs on it, one of which is Bruce Springsteen’s “Born in the
USA.” You play your iPod on shuffle (where each time a new song begins, the iPod chooses one
uniformly at random from your library of n songs) to enjoy some variety. Given that you have
listened to 2n songs without hearing any songs by the Boss1, how many additional songs do
you expect to listen to before you hear “Born in the USA”? Hint: Recall that if X ∼ Geom(p),
then E[X] = 1/p, and that the conditional expectation E[X | A] =

∑
x xP (X = x | A).

1that’s Bruce Springsteen
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Question M.5? (Extra credit: sampling without replacement (4 extra pts)): Suppose that your
iPod has n songs on it, one of which remains “Born in the USA,” and you listen to them on shuffle,
but your iPod has an iVariety mode, where it samples songs without replacement. (So in iVariety
mode, by the nth song, you’ve heard each song.) Let X be the first time you hear the song “Born
in the USA.” Give E[X].
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Scratch paper
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Scratch paper
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