
Stats 116 Problem Set 2
Due: Wednesday, April 13, 5:00 p.m. on Gradescope

Please show your work for each exercise. If you collaborate with someone else—this is
fine—be sure to note that in your homework submission. You must each write up separate
answer sets. Questions are either from Ross’s A First Course in Probability or our are home-
cooked.

Question 2.1 (Ross problem 2.29): An urn contains n white and m black balls, where n
and m are positive numbers.

(a) If two balls are randomly withdrawn, what is the probability that they are the same color?

(b) If a ball is randomly withdrawn and then replaced before the second one is drawn, what
is the probability that the withdrawn balls are the same color?

(c) Show that the probability in part (b) is always larger than the one in part (a).

Question 2.2 (Ross theoretical exercise 2.13): Prove that P (E,F c) = P (E)− P (E,F ).

Question 2.3 (Ross theoretical exercise 2.19): An urn contains n red and m blue balls.
They are withdrawn one at a time until a total of r, where r ≤ n, red balls have been
withdrawn. Find the probability that a total of k balls are withdrawn. Hint. A total of k
balls will be withdrawn if there are r − 1 red balls in the first k − 1 withdrawals and the kth
withdrawal is a red ball.

Question 2.4 (Ross problem 3.31): There are 15 tennis balls in a box, of which 9 have not
previously been used. Three of the balls are randomly chosen, played with, and then returned
to the box. Later, another 3 balls are randomly chosen from the box. Find the probability
that none of these final 3 balls has ever been used. (You do not need to compute the exact
value, but you should write out the formula. If you wish to double-check your formula, it
should be about .082.)

Question 2.5 (Ross problem 3.35): On rainy days, Joe is late to work with probability .3;
on nonrainy days, he is late with probability .1. With probability .7, it will rain tomorrow.

(a) Find the probability that Joe is early tomorrow.

(b) Given that Joe was early, what is the conditional probability that it rained?

Question 2.6 (Ross theoretical exercise 3.5):

(a) Prove that if E and F are mutually exclusive, then

P (E | E ∪ F ) =
P (E)

P (E) + P (F )

(b) Prove that if Ei, i ≥ 1, are all mutually exclusive, then for any j,

P

(
Ej |

∞⋃
i=1

Ei

)
=

P (Ej)∑∞
i=1 P (Ei)

.
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Question 2.7 (Ross theoretical exercise 3.6): Prove that if E1, E2, . . . , En are independent
events, then

P (E1 ∪ E2 ∪ . . . ∪ En) = 1−
n∏
i=1

[1− P (Ei)] .

Hint. Don’t use inclusion/exclusion. You may use that if E1, . . . , En are independent, then
so are Ec1, . . . , E

c
n.

Question 2.8: Consider the following stylized scenario of trying to analyze biodiversity in
an ecological area. We model this as follows: let Hk be the event that there are k distinct
species in the environment, and we assume that P (Hk) = 6

π2
1
k2

for k = 1, 2, 3, . . ., where the
6
π2 term normalizes the probabilities so that

∞∑
k=1

P (Hk) =
6

π2

∞∑
k=1

1

k2
=

6

π2
π2

6
= 1.

We assume that when Hk holds, we draw a species uniformly at random from the k species
in the environment. Suppose we take n samples (observations) from the environment, where
we release a species after observing it (i.e., sampling with replacement).

(a) Let An be the event that each of the n observations is the same species. Give

P (An | Hk).

(b) Using your answer to part (a) to show that given the first n observations are identical
species, the probability that the (n+ 1)st species drawn is identical is

P (An+1 | An) =
ζ(n+ 2)

ζ(n+ 1)
,

where ζ is the Riemann Zeta Function, defined as ζ(s) =
∑∞

k=1 k
−s for all complex

numbers s ∈ C with real part Re(z) > 1. You certainly do not need to know about the
zeta function to answer this question.

(c) Show that

P (H1 | An) =
1

ζ(n+ 1)

and so P (H1 | An) → 1 as n → ∞. That is, as you observe more and more organisms
from a single species, you become more and more certain of the completely non-diverse
environment H1.
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Question 2.9? (Extra credit: conditional probabilities): Let the events A1, A2, . . . , An, B
be independent. In this question, you will work out the details to prove the following theorem:

Theorem 2.9.1. For every set E that can be formed by finitely many set operations involving
the Ai, we have

P (B | E) = P (B).

To help with this problem a bit, we formally define the types of sets E we use, adopting
some language from set theory: we say a collection A of subsets of a sample space S is an
algebra over S if the following three conditions hold:

i. A contains all complements of sets in it, so that if E ∈ A then Ec ∈ A, i.e., S \ E ∈ A.

ii. The empty set is in A, i.e., ∅ ∈ A

iii. The collection A of sets includes all unions and intersections of sets in it, that is,

E ∪ F ∈ A whenever E,F ∈ A

and
E ∩ F ∈ A whenever E,F ∈ A.

The smallest set A containing A1, . . . , An is called the algebra generated by A1, . . . , An.
We prove Theorem 2.9.1 in pieces, first by building up the algebra that the Ai generate,

then moving to the theorem proper. The first parts (a)–(d) deal with the set algebra; you
may, if you wish, simply skip to part (e) to prove the theorem. Throughout the proof, we will
use the abuse of notation that A1 = A and A−1 = Ac for sets A.

(a) Suppose the set E = ∪li=1Ei where the Ei are not necessarily disjoint. Show that

E =
l⋃

i=1

Gi

for sets Gi = Ei \ {E1 ∪ . . . Ei−1} = Ec1 ∩ Ec2 ∩ . . . ∩ Eci−1 ∩ Ei, which are disjoint.

(b) Suppose the set E is of the form E = Aα1
1 ∩A

α2
2 ∩ . . .∩A

αk
k , where each αj ∈ {±1}. Show

that

Ec =

k⋃
j=1

Ej

where the sets

Ej = A
−αj

j \ {A−α1
1 ∪ . . . ∪A−αj−1

j−1 } = A
−αj

j ∩Aα1
1 ∩ . . . ∩A

αj−1

j−1

are all disjoint.

(c) Suppose that the sets E and F are of the form E = ∪li=1Ei and F = ∪mj=1Fj , where the
Ei are all disjoint from one another and the Fj are all disjoint from one another. Argue
that

E ∩ F =

l⋃
i=1

m⋃
j=1

Gij

for sets of the form Gij = Ei ∩ Fj , where the Gij are all disjoint.
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(d) Suppose the sets E and F are of the form E = ∪li=1Ei and F = ∪mj=1Fj . Define the
lexicographic order on pairs (i, j) by (i′, j′) ≺ (i, j) if i′ < i or i′ = i and j′ < j. Conclude
using part (a) that we may write

E ∪ F =

l⋃
i=1

m⋃
j=1

Gij

where Gij are disjoint and equal to the disjoint union

Gij =

Ei ∩ ⋂
(i′,j′)≺(i,j)

(Eci′ ∩ F cj′)

 ∪

Fj ∩ Eci ∩ ⋂
(i′,j′)≺(i,j)

(Eci′ ∩ F cj′)

 .

Parts (a)–(d) actually shown that for the algebra A generated by A1, . . . , An, we can write
any set E ∈ A (or event E) as the disjoint union

E =

l⋃
j=1

Ej (2.1)

where each set Ej is an intersection of a finite number of sets Ai and their complements, i.e.

Ej = Aα1
i1
∩Aα2

i2
∩ . . . ∩Aαk

ik

for some signs α ∈ {±1}k and indices i1, . . . , ik ∈ {1, . . . , n}, and the Ej are disjoint.

(e) Using the identity (2.1), prove Theorem 2.9.1. You may use the fact that if A1, . . . , An, B
are (mutually) independent, then so are Aα1

1 , . . . , Aαn
n , Bα0 for any αj ∈ {±1}.
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