
Stats 116 Problem Set 9
Due: Wednesday, June 1 5:00 p.m. on Gradescope

Please show your work for each exercise. If you collaborate with someone else—this is
fine—be sure to note that in your homework submission. You must each write up separate
answer sets. Questions are either from Ross’s A First Course in Probability, Blitzstein and
Hwang’s Introduction to Probability, Second Edition, or our are home-cooked special sauce.

Question 9.1 (Blitzstein and Hwang 6.17): Let X1, . . . , Xn be i.i.d. with mean µ, variance
σ2, and MGF M . Let

Zn =
√
n

(
Xn − µ

σ

)
,

where Xn = 1
n

∑n
i=1Xi is the sample mean.

(a) (2 pts) Show that Zn is a standardized quantity, i.e., its mean is 0 and its variance is 1.

(b) (2 pts) Find the MGF of Zn in terms of M , the MGF of each Xi.

Question 9.2 ((3 pts) Blitzstein and Hwang 6.18): Use the MGF of the Geom(p) distribution
to give another proof that the mean of this distribution is q/p and the variance is q/p2, where
q = 1− p.

Question 9.3 (Blitzstein and Hwang 10.35): A binary sequence is being generated through
some process (random or deterministic). You need to sequentially predict each new number,
i.e., you predict whether the next number will be 0 or 1, then observe it, then predict the
next number, etc. Each of your predictions can be based on the entire past history of the
sequence.

(a) (2 pts) Suppose for this part that the binary sequence consists of i.i.d. Bernoulli(p) random
variables, with p known. What is your optimal strategy (for each prediction, your goal
is to maximize the probability of being correct)? What is the probability that you will
guess the nth value correctly with this strategy?

(b) (3 pts) Now suppose that the binary sequence consists of i.i.d. Bernoulli(p) random vari-
ables, with p unknown. Consider the following strategy: say 1 as your first prediction;
after that, say “1” if the proportion of 1s so far is at least 1

2 , and say “0” otherwise. Find
the limit as n→∞ the probability of guessing the nth value correctly (in terms of p).

(c) (2 pts) Now suppose that you follow the strategy from (b), but that the binary sequence
is generated by a nefarious entity who knows your strategy. What can the entity do to
make your guesses be wrong as often as possible?

Question 9.4 (Moment generating functions of exponential random variables): Say X and

Xi
iid∼ Exp(1), so that each Xi has density f(x) = e−x for x ≥ 0, 0 otherwise.

(a) Show that E[eλX ] = exp(log 1
1−λ) for λ < 1, E[eλX ] = +∞ otherwise.

(b) Using that − log(1− λ) ≤ λ+ λ2 for λ ≤ 1
2 , show that for t ≥ 0,

P(X − E[X] ≥ t) ≤ exp

(
min

0≤λ≤ 1
2

[
λ2 − λt

])
.
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(c) Show that for t ≥ 0,

argmin
0≤λ≤ 1

2

{
λ2 − λt

}
= min

{
t

2
,
1

2

}
and

min
0≤λ≤ 1

2

{
λ2 − λt

}
=

{
1
4 −

t
2 if t > 1

− t2

4 if 0 ≤ t ≤ 1.
(9.1)

(Recall that argmin denotes the actual minimizer of its argument, while min is the min-
imum value of the expression after it.)

(d) Show that

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
= P

(
n∑
i=1

(Xi − E[Xi]) ≥ nt

)
≤ exp

(
n · min

0≤λ≤ 1
2

[
λ2 − λt

])
.

Celebrate, because you have shown that for an i.i.d. sequence of Exp(1) random variables,
if Xn = 1

n

∑n
i=1Xi, there is a numerical constant c > 0 such that

P(Xn − 1 ≥ t) ≤ exp
(
−cnmin{t, t2}

)
.

Question 9.5 (Maxima of random variables with different moment bounds):

(a) Suppose that Xi are mean-zero 1-sub-Gaussian random variables, so that logE[eλXi ] ≤ λ2

2 ,

and so (by a Chernoff bound) P(Xi ≥ t) ≤ exp(− t2

2 ) for all t ≥ 0. Show that

P
(

max
i≤n

Xi ≥
√

2σ2 log
n

δ

)
≤ δ.

That is the maximum of n sub-Gaussian random variables scales at most as
√

log n.

(b) Suppose that Xi are Exp(1) random variables, so P(Xi ≥ t) = e−t for all t ≥ 0. Show
that

P
(

max
i≤n

Xi ≥ log
n

δ

)
≤ δ.

(c) Let Xi be independent random variables with densities

fX(x) =
1

x2
for x ≥ 1,

fX(x) = 0 otherwise. Show that P(Xi ≥ t) = 1
t for all t ≥ 1, and then show that if c > 0

then

lim
n→∞

P
(

max
i≤n

Xi ≥ cn
)

= 1− e−1/c.

Question 9.6 (Recovery of molecular structure via Poisson scattering): In phase retrieval1

one puts a molecule of interest, which we represent as x? ∈ Rn, where the goal is to infer the

1In the real world one does this with complex numbers, as we need to find the phases of the x ∈ Cn, that
is, if the jth coordinate is xj = rje

iφj for i =
√
−1, the phase is φj ∈ [0, 2π] and |xj | = |rj |, but those just

make things complicated

2



structure of the molecule, in front of an X-ray or other emitter. One observes m measurements
Y ∈ Rm+ , that is, Y = [Yj ]

m
j=1 where Yj ≥ 0. These measurements have distribution

Yj ∼ Poisson
(
(aTj x

?)2
)

independently, i = 1, . . . ,m, (9.2)

where aj ∈ Rn are a collection of known measurement vectors. (The detector counts photons,
so that Yj is the number of photos hitting the detector at position j, and as we have seen,
emissions from atoms in a given time period are Poisson distributed.)

Remarkably, though phase retrieval is an entire research field, you now have a lot of the
probabilistic background to solve problems in it.

(a) (2 pts) The MGF of X ∼ Poisson(λ) once X is centered by its mean E[X] = λ is

MX−λ(t) := E[et(X−λ)] = exp
(
λet − λ(t+ 1)

)
.

Using that et ≤ 1 + t+ t2 for all t ≤ 1, show that for t ≤ 1,

MX−λ(t) ≤ exp
(
λt2
)
.

(b) (1 pts) Let v2 be the elementwise square, i.e., v2 = [v2j ]
m
j=1 ∈ Rm+ . Let A ∈ Rm×n have

rows aTj , so A = [a1 a2 · · · am]T . Why is E[Y ] = (Ax?)2 in the distribution (9.2)?

(c) (2 pts) Let ε = Y − (Ax?)2 = Y − E[Y ] be the random error in the measurements (9.2),
so Y = (Ax?)2 + ε. Using part (a), show that for any vector β ∈ Rm with entries βj ≤ 1,

E[exp(εTβ)] = E
[

exp

( m∑
j=1

εjβj

)]
≤ exp

( m∑
j=1

(aTj x
?)2β2j

)
.

Conclude that if |aTj x?| ≤ 1 for each j, then E[exp(εTβ)] ≤ exp(‖β‖22) for such β vectors.

(d) (2 pts) For any vectors z, x ∈ Rn, define the difference of squares vector

d(z, x) := (Az)2 − (Ax)2 ∈ Rm,

with jth entry dj(z, x) = (aTj z)
2 − (aTj x)2. Using the shorthand d = d(z, x?) ∈ Rm, show∥∥(Az)2 − Y

∥∥2
2
≤
∥∥(Ax?)2 − Y

∥∥2
2

if and only if

dT ε ≥ 1

2
‖d‖22 , i.e. (dT ε)/ ‖d‖22 ≥

1

2
.

Hint: write Y = (Ax?)2 + ε, then expand the squares.

(e) (4 pts) Use a Chernoff bound to show that for any z ∈ Rn, if d = d(z, x?) and both
|aTj x?| ≤ 1 and |aTj z| ≤ 1 for all rows aj of the measurement matrix A, then

P

(
dT ε

‖d‖22
≥ 1

2

)
≤ exp

(
− 1

16
‖d‖22

)
.

Hint: Observe that for any t ∈ R satisfying
t|dj |
‖d‖22
≤ 1, we have

E[exp(tdT ε/ ‖d‖22)] ≤ exp(t2/ ‖d‖22)

by part (c). Then note that the minimizer of t2

‖d‖22
− t

2 is t? = ‖d‖22 /4, and as dj =

dj(z, x) = (aTj z)
2 − (aTj x)2 ∈ [−1, 1], the scalar t? satisfies t?|dj |/ ‖d‖22 ≤ 1 for all j.
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(f) (3 pts) Let X be a collection of vectors in Rn, and assume that each pair x, z in X is
distinguishable in the sense that ‖d(z, x)‖22 ≥

m
2 (so that about m/2 of the measurements

(Ax)2 and (Az)2 would be different between x and z). Consider the estimate

x̂ = argmin
x∈X

∥∥Y − (Ax)2
∥∥2
2

of x? (the notation argminx∈X
∥∥Y − (Ax)2

∥∥2
2

means the x that minimizes
∥∥Y − (Ax)2

∥∥2
2

over x ∈ X ). Assume that x? ∈ X and let δ ∈ (0, 1). How large of a collection X
of distinguishable vectors could we have so that the estimator x̂ satisfies x̂ = x? with
probability at least 1− δ? Hint: Use a union bound and your technique in Question 9.5.

Question 9.7? (Extra credit: Hoeffding’s lemma and inequality): In this question, you will
prove Hoeffding’s lemma: if X is a random variable satisfying a ≤ X ≤ b, then

E[exp(λ(X − E[X]))] ≤ exp

(
λ2(b− a)2

8

)
for all λ ∈ R. (9.3)

(a) (2 pts) Suppose that Y satisfies a ≤ Y ≤ b. Show that Var(Y ) ≤ (b−a)2
4 . Hint: Use

E[(Y − E[Y ])2] ≤ E[(Y − c)2] for any c (why is this?).

For parts (b)–(e) of the question, we assume w.l.o.g. that E[X] = 0.

(b) (1 pt) Let ϕ(λ) = logE[eλX ]. Show that

ϕ′(λ) =
E[XeλX ]

E[eλX ]
and ϕ′′(λ) =

E[X2eλX ]

E[eλX ]
− E[XeλX ]2

E[eλX ]2
.

(c) (1 pt) Assume that X has a density fX (this is only to simplify the question). Let
m(λ) = E[eλX ] be shorthand for the moment generating function of X. Show that the
function g(y) = eλyfX(y)/m(λ) is a valid density with g(y) = 0 for y < a and y > b.

(d) (2 pts) Give a random variable Y (that is, define its density) with a ≤ Y ≤ b such that

ϕ′′(λ) = Var(Y ) and conclude that ϕ′′(λ) ≤ (b−a)2
4 .

(e) (1 pt) Using Taylor’s theorem that if h is a twice continuously differentiable function,
then h(x) = h(0) + h′(0)x + 1

2h
′′(x̃)x2 for some x̃ between 0 and x to conclude that

ϕ(λ) ≤ (b−a)2
8 λ2 for all λ and therefore you have shown Hoeffding’s lemma (9.3).

(f) (2 pts) Prove Hoeffding’s inequality: if X1, X2, . . . , Xn are independent random variables
with a ≤ Xi ≤ b, then for all t ≥ 0,

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
and

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

)
≤ exp

(
− 2nt2

(b− a)2

)
.
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