
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 14 — Consistency and asymptotic normality of the MLE

14.1 Consistency and asymptotic normality

We showed last lecture that given data X1, . . . , Xn
IID∼ Poisson(λ), the maximum likelihood

estimator for λ is simply λ̂ = X̄. How accurate is λ̂ for λ? Recall from Lecture 12 the
following computations:

Eλ[X̄] =
1

n

n∑
i=1

E[Xi] = λ,

Varλ[X̄] =
1

n2

n∑
i=1

Var[Xi] =
λ

n
.

So λ̂ is unbiased, with variance λ/n.
When n is large, asymptotic theory provides us with a more complete picture of the

“accuracy” of λ̂: By the Law of Large Numbers, X̄ converges to λ in probability as n→∞.
Furthermore, by the Central Limit Theorem,

√
n(X̄ − λ)→ N (0,Var[Xi]) = N (0, λ)

in distribution as n → ∞. So for large n, we expect λ̂ to be close to λ, and the sampling
distribution of λ̂ is approximately N (λ, λ

n
). This normal approximation is useful for many

reasons—for example, it allows us to understand other measures of error (such as E[|λ̂− λ|]
or P[|λ̂ − λ| > 0.01]), and (later in the course) will allow us to obtain a confidence interval
for λ̂.

In a parametric model, we say that an estimator θ̂ based on X1, . . . , Xn is consistent if
θ̂ → θ in probability as n → ∞. We say that it is asymptotically normal if

√
n(θ̂ − θ)

converges in distribution to a normal distribution (or a multivariate normal distribution, if
θ has more than 1 parameter). So λ̂ above is consistent and asymptotically normal.

The goal of this lecture is to explain why, rather than being a curiosity of this Poisson
example, consistency and asymptotic normality of the MLE hold quite generally for many
“typical” parametric models, and there is a general formula for its asymptotic variance. The
following is one statement of such a result:

Theorem 14.1. Let {f(x|θ) : θ ∈ Ω} be a parametric model, where θ ∈ R is a single

parameter. Let X1, . . . , Xn
IID∼ f(x|θ0) for θ0 ∈ Ω, and let θ̂ be the MLE based on X1, . . . , Xn.

Suppose certain regularity conditions hold, including:1

1Some technical conditions in addition to the ones stated are required to make this theorem rigorously
true; these additional conditions will hold for the examples we discuss, and we won’t worry about them in
this class.

14-1



• All PDFs/PMFs f(x|θ) in the model have the same support,

• θ0 is an interior point (i.e., not on the boundary) of Ω,

• The log-likelihood l(θ) is differentiable in θ, and

• θ̂ is the unique value of θ ∈ Ω that solves the equation 0 = l′(θ).

Then θ̂ is consistent and asymptotically normal, with
√
n(θ̂−θ0)→ N (0, 1

I(θ0)
) in distribution.

Here, I(θ) is defined by the two equivalent expressions

I(θ) := Varθ[z(X, θ)] = −Eθ[z′(X, θ)],

where Varθ and Eθ denote variance and expectation with respect to X ∼ f(x|θ), and

z(x, θ) =
∂

∂θ
log f(x|θ), z′(x, θ) =

∂2

∂θ2
log f(x|θ).

z(x, θ) is called the score function, and I(θ) is called the Fisher information. Heuris-
tically for large n, the above theorem tells us the following about the MLE θ̂:

• θ̂ is asymptotically unbiased. More precisely, the bias of θ̂ is less than order 1/
√
n.

(Otherwise
√
n(θ̂ − θ0) should not converge to a distribution with mean 0.)

• The variance of θ̂ is approximately 1
nI(θ0)

. In particular, the standard error is of order

1/
√
n, and the variance (rather than the squared bias) is the main contributing factor

to the mean-squared-error of θ̂.

• If the true parameter is θ0, the sampling distribution of θ̂ is approximatelyN (θ0,
1

nI(θ0)
).

Example 14.2. Let’s verify that this theorem is correct for the above Poisson example.
There,

log f(x|λ) = log
λxe−λ

x!
= x log λ− λ− log(x!),

so the score function and its derivative are given by

z(x, λ) =
∂

∂λ
log f(x|λ) =

x

λ
− 1, z′(x, λ) =

∂2

∂λ2
log f(x|λ) = − x

λ2
.

We may compute the Fisher information as

I(λ) = −Eλ[z′(X,λ)] = Eλ
[
X

λ2

]
=

1

λ
,

so
√
n(λ̂− λ)→ N (0, λ) in distribution. This is the same result as what we obtained using

a direct application of the CLT.
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14.2 Proof sketch

We’ll sketch heuristically the proof of Theorem 14.1, assuming f(x|θ) is the PDF of a con-
tinuous distribution. (The discrete case is analogous with integrals replaced by sums.)

To see why the MLE θ̂ is consistent, note that θ̂ is the value of θ which maximizes

1

n
l(θ) =

1

n

n∑
i=1

log f(Xi|θ).

Suppose the true parameter is θ0, i.e. X1, . . . , Xn
IID∼ f(x|θ0). Then for any θ ∈ Ω (not

necessarily θ0), the Law of Large Numbers implies the convergence in probability

1

n

n∑
i=1

log f(Xi|θ)→ Eθ0 [log f(X|θ)]. (14.1)

Under suitable regularity conditions, this implies that the value of θ maximizing the left
side, which is θ̂, converges in probability to the value of θ maximizing the right side, which
we claim is θ0. Indeed, for any θ ∈ Ω,

Eθ0 [log f(X|θ)]− Eθ0 [log f(X|θ0)] = Eθ0
[
log

f(X|θ)
f(X|θ0)

]
.

Noting that x 7→ log x is concave, Jensen’s inequality implies E[logX] ≤ logE[X] for any
positive random variable X, so

Eθ0
[
log

f(X|θ)
f(X|θ0)

]
≤ logEθ0

[
f(X|θ)
f(X|θ0)

]
= log

∫
f(x|θ)
f(x|θ0)

f(x|θ0)dx = log

∫
f(x|θ)dx = 0.

So θ 7→ Eθ0 [log f(X|θ)] is maximized at θ = θ0, which establishes consistency of θ̂.
To show asymptotic normality, we first compute the mean and variance of the score:

Lemma 14.1 (Properties of the score). For θ ∈ Ω,

Eθ[z(X, θ)] = 0, Varθ[z(X, θ)] = −E[z′(X, θ)].

Proof. By the chain rule of differentiation,

z(x, θ)f(x|θ) =

(
∂

∂θ
log f(x|θ)

)
f(x|θ) =

∂
∂θ
f(x|θ)
f(x|θ)

f(x|θ) =
∂

∂θ
f(x|θ). (14.2)

Then, since
∫
f(x|θ)dx = 1,

Eθ[z(X, θ)] =

∫
z(x, θ)f(x|θ)dx =

∫
∂

∂θ
f(x|θ)dx =

∂

∂θ

∫
f(x|θ)dx = 0.
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Next, we differentiate this identity with respect to θ:

0 =
∂

∂θ
Eθ[z(X, θ)]

=
∂

∂θ

∫
z(x, θ)f(x|θ)dx

=

∫ (
z′(x, θ)f(x|θ) + z(x, θ)

(
∂

∂θ
f(x|θ)

))
dx

=

∫ (
z′(x, θ)f(x|θ) + z(x, θ)2f(x|θ)

)
dx

= Eθ[z′(X, θ)] + Eθ[z(X, θ)2]

= Eθ[z′(X, θ)] + Varθ[z(X, θ)],

where the fourth line above applies (14.2) and the last line uses Eθ[z(X, θ)] = 0.

Since θ̂ maximizes l(θ), we must have 0 = l′(θ̂). Consistency of θ̂ ensures that (when n
is large) θ̂ is close to θ0 with high probability. This allows us to apply a first-order Taylor
expansion to the equation 0 = l′(θ̂) around θ̂ = θ0:

0 ≈ l′(θ0) + (θ̂ − θ0)l′′(θ0),

so
√
n(θ̂ − θ0) ≈ −

√
n
l′(θ0)

l′′(θ0)
= −

1√
n
l′(θ0)

1
n
l′′(θ0)

. (14.3)

For the denominator, by the Law of Large Numbers,

1

n
l′′(θ0) =

1

n

n∑
i=1

∂2

∂θ2

[
log f(Xi|θ)

]
θ=θ0

=
1

n

n∑
i=1

z′(Xi, θ0)→ Eθ0 [z′(X, θ0)] = −I(θ0)

in probability. For the numerator, recall by Lemma 14.1 that z(X, θ0) has mean 0 and
variance I(θ0) when X ∼ f(x|θ0). Then by the Central Limit Theorem,

1√
n
l′(θ0) =

1√
n

n∑
i=1

∂

∂θ

[
log f(Xi|θ)

]
θ=θ0

=
1√
n

n∑
i=1

z(Xi, θ0)→ N (0, I(θ0))

in distribution. Applying these conclusions, the Continuous Mapping Theorem, and Slutsky’s
Lemma2 to (14.3),

√
n(θ̂n − θ0)→

1

I(θ0)
N (0, I(θ0)) = N (0, I(θ0)

−1),

as desired.

2Slutsky’s Lemma says: If Xn → c in probability and Yn → Y in distribution, then XnYn → cY in
distribution.
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