Lecture 14 — Consistency and asymptotic normality of the MLE

14.1 Consistency and asymptotic normality

We showed last lecture that given data $X_1, \ldots, X_n \stackrel{IID}{\sim} \text{Poisson}(\lambda)$, the maximum likelihood estimator for λ is simply $\hat{\lambda} = \bar{X}$. How accurate is $\hat{\lambda}$ for λ ? Recall from Lecture 12 the following computations:

$$\mathbb{E}_{\lambda}[\bar{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \lambda,$$
$$\operatorname{Var}_{\lambda}[\bar{X}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}[X_i] = \frac{\lambda}{n}.$$

So λ is unbiased, with variance λ/n .

When n is large, asymptotic theory provides us with a more complete picture of the "accuracy" of $\hat{\lambda}$: By the Law of Large Numbers, \bar{X} converges to λ in probability as $n \to \infty$. Furthermore, by the Central Limit Theorem,

$$\sqrt{n}(\bar{X} - \lambda) \to \mathcal{N}(0, \operatorname{Var}[X_i]) = \mathcal{N}(0, \lambda)$$

in distribution as $n \to \infty$. So for large n, we expect $\hat{\lambda}$ to be close to λ , and the sampling distribution of $\hat{\lambda}$ is approximately $\mathcal{N}(\lambda, \frac{\lambda}{n})$. This normal approximation is useful for many reasons—for example, it allows us to understand other measures of error (such as $\mathbb{E}[|\hat{\lambda} - \lambda|]$ or $\mathbb{P}[|\hat{\lambda} - \lambda| > 0.01]$), and (later in the course) will allow us to obtain a confidence interval for $\hat{\lambda}$.

In a parametric model, we say that an estimator $\hat{\theta}$ based on X_1, \ldots, X_n is **consistent** if $\hat{\theta} \to \theta$ in probability as $n \to \infty$. We say that it is **asymptotically normal** if $\sqrt{n}(\hat{\theta} - \theta)$ converges in distribution to a normal distribution (or a multivariate normal distribution, if θ has more than 1 parameter). So $\hat{\lambda}$ above is consistent and asymptotically normal.

The goal of this lecture is to explain why, rather than being a curiosity of this Poisson example, consistency and asymptotic normality of the MLE hold quite generally for many "typical" parametric models, and there is a general formula for its asymptotic variance. The following is one statement of such a result:

Theorem 14.1. Let $\{f(x|\theta) : \theta \in \Omega\}$ be a parametric model, where $\theta \in \mathbb{R}$ is a single parameter. Let $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x|\theta_0)$ for $\theta_0 \in \Omega$, and let $\hat{\theta}$ be the MLE based on X_1, \ldots, X_n . Suppose certain regularity conditions hold, including:¹

¹Some technical conditions in addition to the ones stated are required to make this theorem rigorously true; these additional conditions will hold for the examples we discuss, and we won't worry about them in this class.

- All PDFs/PMFs $f(x|\theta)$ in the model have the same support,
- θ_0 is an interior point (i.e., not on the boundary) of Ω ,
- The log-likelihood $l(\theta)$ is differentiable in θ , and
- $\hat{\theta}$ is the unique value of $\theta \in \Omega$ that solves the equation $0 = l'(\theta)$.

Then $\hat{\theta}$ is consistent and asymptotically normal, with $\sqrt{n}(\hat{\theta}-\theta_0) \rightarrow \mathcal{N}(0, \frac{1}{I(\theta_0)})$ in distribution. Here, $I(\theta)$ is defined by the two equivalent expressions

$$I(\theta) := \operatorname{Var}_{\theta}[z(X, \theta)] = -\mathbb{E}_{\theta}[z'(X, \theta)],$$

where $\operatorname{Var}_{\theta}$ and \mathbb{E}_{θ} denote variance and expectation with respect to $X \sim f(x|\theta)$, and

$$z(x,\theta) = \frac{\partial}{\partial \theta} \log f(x|\theta), \qquad z'(x,\theta) = \frac{\partial^2}{\partial \theta^2} \log f(x|\theta).$$

 $z(x,\theta)$ is called the **score function**, and $I(\theta)$ is called the **Fisher information**. Heuristically for large n, the above theorem tells us the following about the MLE $\hat{\theta}$:

- $\hat{\theta}$ is asymptotically unbiased. More precisely, the bias of $\hat{\theta}$ is less than order $1/\sqrt{n}$. (Otherwise $\sqrt{n}(\hat{\theta} - \theta_0)$ should not converge to a distribution with mean 0.)
- The variance of $\hat{\theta}$ is approximately $\frac{1}{nI(\theta_0)}$. In particular, the standard error is of order $1/\sqrt{n}$, and the variance (rather than the squared bias) is the main contributing factor to the mean-squared-error of $\hat{\theta}$.
- If the true parameter is θ_0 , the sampling distribution of $\hat{\theta}$ is approximately $\mathcal{N}(\theta_0, \frac{1}{nI(\theta_0)})$.

Example 14.2. Let's verify that this theorem is correct for the above Poisson example. There,

$$\log f(x|\lambda) = \log \frac{\lambda^{x} e^{-\lambda}}{x!} = x \log \lambda - \lambda - \log(x!),$$

so the score function and its derivative are given by

$$z(x,\lambda) = \frac{\partial}{\partial\lambda}\log f(x|\lambda) = \frac{x}{\lambda} - 1, \qquad z'(x,\lambda) = \frac{\partial^2}{\partial\lambda^2}\log f(x|\lambda) = -\frac{x}{\lambda^2}$$

We may compute the Fisher information as

$$I(\lambda) = -\mathbb{E}_{\lambda}[z'(X,\lambda)] = \mathbb{E}_{\lambda}\left[\frac{X}{\lambda^2}\right] = \frac{1}{\lambda},$$

so $\sqrt{n}(\hat{\lambda} - \lambda) \to \mathcal{N}(0, \lambda)$ in distribution. This is the same result as what we obtained using a direct application of the CLT.

14.2 Proof sketch

We'll sketch heuristically the proof of Theorem 14.1, assuming $f(x|\theta)$ is the PDF of a continuous distribution. (The discrete case is analogous with integrals replaced by sums.)

To see why the MLE $\hat{\theta}$ is consistent, note that $\hat{\theta}$ is the value of θ which maximizes

$$\frac{1}{n}l(\theta) = \frac{1}{n}\sum_{i=1}^{n}\log f(X_i|\theta).$$

Suppose the true parameter is θ_0 , i.e. $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x|\theta_0)$. Then for any $\theta \in \Omega$ (not necessarily θ_0), the Law of Large Numbers implies the convergence in probability

$$\frac{1}{n} \sum_{i=1}^{n} \log f(X_i|\theta) \to \mathbb{E}_{\theta_0}[\log f(X|\theta)].$$
(14.1)

Under suitable regularity conditions, this implies that the value of θ maximizing the left side, which is $\hat{\theta}$, converges in probability to the value of θ maximizing the right side, which we claim is θ_0 . Indeed, for any $\theta \in \Omega$,

$$\mathbb{E}_{\theta_0}[\log f(X|\theta)] - \mathbb{E}_{\theta_0}[\log f(X|\theta_0)] = \mathbb{E}_{\theta_0}\left[\log \frac{f(X|\theta)}{f(X|\theta_0)}\right]$$

Noting that $x \mapsto \log x$ is concave, Jensen's inequality implies $\mathbb{E}[\log X] \leq \log \mathbb{E}[X]$ for any positive random variable X, so

$$\mathbb{E}_{\theta_0}\left[\log\frac{f(X|\theta)}{f(X|\theta_0)}\right] \le \log \mathbb{E}_{\theta_0}\left[\frac{f(X|\theta)}{f(X|\theta_0)}\right] = \log \int \frac{f(x|\theta)}{f(x|\theta_0)} f(x|\theta_0) dx = \log \int f(x|\theta) dx = 0.$$

So $\theta \mapsto \mathbb{E}_{\theta_0}[\log f(X|\theta)]$ is maximized at $\theta = \theta_0$, which establishes consistency of $\hat{\theta}$.

To show asymptotic normality, we first compute the mean and variance of the score:

Lemma 14.1 (Properties of the score). For $\theta \in \Omega$,

$$\mathbb{E}_{\theta}[z(X,\theta)] = 0, \qquad \operatorname{Var}_{\theta}[z(X,\theta)] = -\mathbb{E}[z'(X,\theta)].$$

Proof. By the chain rule of differentiation,

$$z(x,\theta)f(x|\theta) = \left(\frac{\partial}{\partial\theta}\log f(x|\theta)\right)f(x|\theta) = \frac{\frac{\partial}{\partial\theta}f(x|\theta)}{f(x|\theta)}f(x|\theta) = \frac{\partial}{\partial\theta}f(x|\theta).$$
(14.2)

Then, since $\int f(x|\theta) dx = 1$,

$$\mathbb{E}_{\theta}[z(X,\theta)] = \int z(x,\theta)f(x|\theta)dx = \int \frac{\partial}{\partial\theta}f(x|\theta)dx = \frac{\partial}{\partial\theta}\int f(x|\theta)dx = 0.$$

Next, we differentiate this identity with respect to θ :

$$0 = \frac{\partial}{\partial \theta} \mathbb{E}_{\theta}[z(X,\theta)]$$

= $\frac{\partial}{\partial \theta} \int z(x,\theta) f(x|\theta) dx$
= $\int \left(z'(x,\theta) f(x|\theta) + z(x,\theta) \left(\frac{\partial}{\partial \theta} f(x|\theta) \right) \right) dx$
= $\int \left(z'(x,\theta) f(x|\theta) + z(x,\theta)^2 f(x|\theta) \right) dx$
= $\mathbb{E}_{\theta}[z'(X,\theta)] + \mathbb{E}_{\theta}[z(X,\theta)^2]$
= $\mathbb{E}_{\theta}[z'(X,\theta)] + \operatorname{Var}_{\theta}[z(X,\theta)],$

where the fourth line above applies (14.2) and the last line uses $\mathbb{E}_{\theta}[z(X, \theta)] = 0.$

Since $\hat{\theta}$ maximizes $l(\theta)$, we must have $0 = l'(\hat{\theta})$. Consistency of $\hat{\theta}$ ensures that (when *n* is large) $\hat{\theta}$ is close to θ_0 with high probability. This allows us to apply a first-order Taylor expansion to the equation $0 = l'(\hat{\theta})$ around $\hat{\theta} = \theta_0$:

$$0 \approx l'(\theta_0) + (\hat{\theta} - \theta_0) l''(\theta_0),$$

 \mathbf{SO}

$$\sqrt{n}(\hat{\theta} - \theta_0) \approx -\sqrt{n} \frac{l'(\theta_0)}{l''(\theta_0)} = -\frac{\frac{1}{\sqrt{n}}l'(\theta_0)}{\frac{1}{n}l''(\theta_0)}.$$
(14.3)

For the denominator, by the Law of Large Numbers,

$$\frac{1}{n}l''(\theta_0) = \frac{1}{n}\sum_{i=1}^n \frac{\partial^2}{\partial\theta^2} \Big[\log f(X_i|\theta)\Big]_{\theta=\theta_0} = \frac{1}{n}\sum_{i=1}^n z'(X_i,\theta_0) \to \mathbb{E}_{\theta_0}[z'(X,\theta_0)] = -I(\theta_0)$$

in probability. For the numerator, recall by Lemma 14.1 that $z(X, \theta_0)$ has mean 0 and variance $I(\theta_0)$ when $X \sim f(x|\theta_0)$. Then by the Central Limit Theorem,

$$\frac{1}{\sqrt{n}}l'(\theta_0) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \frac{\partial}{\partial\theta} \Big[\log f(X_i|\theta)\Big]_{\theta=\theta_0} = \frac{1}{\sqrt{n}}\sum_{i=1}^n z(X_i,\theta_0) \to \mathcal{N}(0, I(\theta_0))$$

in distribution. Applying these conclusions, the Continuous Mapping Theorem, and Slutsky's Lemma² to (14.3),

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow \frac{1}{I(\theta_0)} \mathcal{N}(0, I(\theta_0)) = \mathcal{N}(0, I(\theta_0)^{-1}),$$

as desired.

²Slutsky's Lemma says: If $X_n \to c$ in probability and $Y_n \to Y$ in distribution, then $X_n Y_n \to cY$ in distribution.