STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 14 — Consistency and asymptotic normality of the MLE

14.1 Consistency and asymptotic normality

We showed last lecture that given data Xi,..., X, IfIvDA Poisson(A), the maximum likelihood
estimator for A is simply A = X. How accurate is A for A7 Recall from Lecture 12 the
following computations:

So \ is unbiased, with variance A/n.

When n is large, asymptotic theory provides us with a more complete picture of the
“accuracy” of A: By the Law of Large Numbers, X converges to A in probability as n — oo.
Furthermore, by the Central Limit Theorem,

V(X = \) = N0, Var[X,]) = N (0, \)

in distribution as n — oco. So for large n, we expect A to be close to A, and the sampling
distribution of X is approximately A/ (A, %) This normal approximation is useful for many

reasons—for example, it allows us to understand other measures of error (such as E[|A — A[]
or P[|A — A| > 0.01]), and (later in the course) will allow us to obtain a confidence interval
for A.

In a parametric model, we say that an estimator 0 based on X1,...,X, is consistent if
6 — 0 in probability as n — oo. We say that it is asymptotically normal if \/ﬁ(é —0)
converges in distribution to a normal distribution (or a multivariate normal distribution, if
0 has more than 1 parameter). So A above is consistent and asymptotically normal.

The goal of this lecture is to explain why, rather than being a curiosity of this Poisson
example, consistency and asymptotic normality of the MLE hold quite generally for many
“typical” parametric models, and there is a general formula for its asymptotic variance. The
following is one statement of such a result:

Theorem 14.1. Let {f(x|0) : 0 € Q} be a parametric model, where 8 € R is a single

parameter. Let Xq,..., X, oy f(x|6y) for Gy € Q, and let § be the MLE based on X1, ..., Xn.

Suppose certain reqularity conditions hold, including:!

!Some technical conditions in addition to the ones stated are required to make this theorem rigorously
true; these additional conditions will hold for the examples we discuss, and we won’t worry about them in
this class.
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All PDFs/PMFs f(x|0) in the model have the same support,

e 0y is an interior point (i.e., not on the boundary) of €,

The log-likelihood 1(0) is differentiable in 0, and

e 0 is the unique value of 6 € Q that solves the equation 0 = I'0).

Then 0 is consistent and asymptotically normal, with \/n(6—6,) — N (0, ﬁ) in distribution.

Here, 1(0) is defined by the two equivalent expressions
I(9) := Varg[2(X,0)] = —Fy[2'(X, )],

where Vary and Ey denote variance and expectation with respect to X ~ f(z|), and

2

a.0) = Slog f(alf).  (w.0) = S o f(al6)

z(z,0) is called the score function, and I(f) is called the Fisher information. Heuris-
tically for large n, the above theorem tells us the following about the MLE 6:

o 0 is asymptotically unbiased. More precisely, the bias of 0 is less than order 1 /\/n.
(Otherwise y/n(6 — 6y) should not converge to a distribution with mean 0.)

e The variance of 6 is approximately m. In particular, the standard error is of order

1/4/n, and the variance (rather than the squared bias) is the main contributing factor
to the mean-squared-error of 6.

e [f the true parameter is 0y, the sampling distribution of fis approximately N (6o, m)

Example 14.2. Let’s verify that this theorem is correct for the above Poisson example.

There,
T ,—A

log f(z|\) = log =zlog A — XA — log(z!),

so the score function and its derivative are given by

z!

9, T 0? T
We may compute the Fisher information as
X 1
]()\) = —E)\[Z,<X, A)] = E)\ |:ﬁ:| = X,

s0 v/n(A — A) = N(0,A) in distribution. This is the same result as what we obtained using
a direct application of the CLT.
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14.2 Proof sketch

We'll sketch heuristically the proof of Theorem 14.1, assuming f(x|f) is the PDF of a con-
tinuous distribution. (The discrete case is analogous with integrals replaced by sums. )
To see why the MLE 0 is consistent, note that 6 is the value of  which maximizes

1 1<
—10)=-) 1 X;l0).
210)= 3 3o 70X
Suppose the true parameter is 6y, i.e. Xq,..., X ILD f(z]0o). Then for any 0 € Q (not

necessarily 6p), the Law of Large Numbers imphes the convergence in probability
1 n
> log £(Xil6) — Eyy[log F(X16)] (14.1)
i=1

Under suitable regularity conditions, this implies that the value of § maximizing the left
side, which is 6, converges in probability to the value of # maximizing the right side, which
we claim is 6y. Indeed, for any 6 € €2,

Egy[log f(X|9)] — Eay [log, f(X|60)] = Ea, {mg S(X]6) } .

f(X160)

Noting that x — logx is concave, Jensen’s inequality implies E[log X| < log E[X] for any
positive random variable X, so

o [log?fﬁ?ﬂﬁlogE [ X|90} o8 [ i s = o [ stelo)is

So 6 — Eg,[log f(X|0)] is maximized at 6 = 6, which establishes consistency of 6.
To show asymptotic normality, we first compute the mean and variance of the score:

Lemma 14.1 (Properties of the score). For 6 € ,
Eo[2(X,0)] =0,  Varg[z(X,0)] = —E[2(X, 6)].
Proof. By the chain rule of differentiation,

0 %f($|9) 0
(o 0)1(0l6) = (5108 1)) Flol6) = BEED falp) = Loptalo). (142)

Then, since [ f(z]0)dx =1,

B[-(X,6) = [ 2(a.0)f(alp)ds = [ o ralode = 2 [ #aloyas -
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Next, we differentiate this identity with respect to 6:

0
0= —Ey[=(X, 0)

_ %/Z(x, 0) f(2]0)dx
_/(z'(x,e) (216) + 2(x, 0) (; (x|8))>dx

= [ (Zw0)falo) + 200,02 (al) ) d
= Eo[/ (X, 0)] + Eg[2(X, 0)?]
= Ey[2'(X, 0)] + Varg[z(X, )],

where the fourth line above applies (14.2) and the last line uses Ey[z(X, 8)] = 0. O

Since ? maximizes [(6), we must have 0 = '(d). Consistency of § ensures that (when n
is large) ¢ is close to 6y with high probability. This allows us to apply a first-order Taylor
expansion to the equation 0 = [’(f) around 6 = 6y:

0~ I'(60) + (0 — 6)1" (),

SO
1

U(6) V(%)

0 — 0) ~ — =— . 14.3
T T 1
For the denominator, by the Law of Large Numbers,
1, 1~ 02 1~ ,
~1"(6,) = Z o [log F(X, |9)} W= ;z (X;,00) — Eg, [/ (X, 00)] = —1(60)

in probability. For the numerator, recall by Lemma 14.1 that z(X,6y) has mean 0 and
variance I(6p) when X ~ f(x|6p). Then by the Central Limit Theorem,

Tl (6) = fZ o sxim)],, = % > =(X0 ) = N(O.1(0)

in distribution. Applying these conclusions, the Continuous Mapping Theorem, and Slutsky’s
Lemma? to (14.3),

Vi, — 00) = ———N(0,1(6)) = N(0,1(65)7),

1
1(00)

as desired.

2Slutsky’s Lemma says: If X,, — c in probability and Y,, — Y in distribution, then X,Y;, — cY in
distribution.
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