17.1 Estimating a function of θ

In the setting of a parametric model, we have been discussing how to estimate the parameter θ. We showed how to compute the MLE $\hat{\theta}$, derived its variance and sampling distribution for large n, and showed that no unbiased estimator can achieve variance much smaller than that of the MLE for large n (the Cramer-Rao lower bound).

In many examples, the quantity we are interested in is not θ itself, but some value $g(\theta)$. The obvious way to estimate $g(\theta)$ is to use $g(\hat{\theta})$, where $\hat{\theta}$ is an estimate (say, the MLE) of θ. This is called the plugin estimate of $g(\theta)$, because we are just “plugging in” $\hat{\theta}$ for θ.

Example 17.1 (Odds). You play a game with a friend, where you flip a biased coin. If the coin lands heads, you give your friend $1. If the coin lands tails, your friend gives you x.

What is the value of x that makes this a fair game?

If the coin lands heads with probability p, then your expected winnings is $-p + (1 - p)x$. The game is fair when $-p + (1 - p)x = 0$, i.e. when $x = p/(1 - p)$. This value $p/(1 - p)$ is the odds of getting heads to getting tails. To estimate the odds from n coin flips $X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p)$,

we may first estimate p by $\hat{p} = \bar{X}$. (This is both the method of moments estimator and the MLE.) Then the plugin estimate of $p/(1 - p)$ is simply $\bar{X}/(1 - \bar{X})$.

The odds falls in the interval $(0, \infty)$ and is not symmetric about $p = 1/2$. We oftentimes think instead in terms of the log-odds, $\log p/(1 - p)$—this can be any real number and is symmetric about $p = 1/2$. The plugin estimate for the log-odds is $\log \bar{X}$.

Example 17.2 (The Pareto mean). The Pareto(x_0, θ) distribution for $x_0 > 0$ and $\theta > 1$ is a continuous distribution over the interval $[x_0, \infty)$, given by the PDF

$$f(x|x_0, \theta) = \begin{cases} \theta x_0^\theta x^{-\theta - 1} & x \geq x_0 \\ 0 & x < x_0. \end{cases}$$

It is commonly used in economics as a model for the distribution of income. x_0 represents the minimum possible income; let’s assume that x_0 is known and equal to 1. We then have a one-parameter model with PDFs $f(x|\theta) = \theta x^{-\theta - 1}$ supported on $[1, \infty)$.

The mean of the Pareto distribution is

$$\mathbb{E}_\theta[X] = \int_1^\infty x \cdot \theta x^{-\theta - 1} dx = \theta \left. \frac{x^{-\theta + 1}}{-\theta + 1} \right|_1^\infty = \frac{\theta}{\theta - 1},$$

17.1
so we might estimate the mean income by $\hat{\theta}/(\hat{\theta} - 1)$ where $\hat{\theta}$ is the MLE. To compute $\hat{\theta}$ from observations X_1, \ldots, X_n, the log-likelihood is

$$l(\theta) = \sum_{i=1}^{n} \log(\theta X_i^{\theta-1}) = \sum_{i=1}^{n} (\log \theta - (\theta + 1) \log X_i) = n \log \theta - (\theta + 1) \sum_{i=1}^{n} \log X_i.$$

Solving the equation

$$0 = l'(\theta) = \frac{n}{\theta} - \sum_{i=1}^{n} \log X_i$$

yields the MLE $\hat{\theta} = n/\sum_{i=1}^{n} \log X_i$.

17.2 The delta method

We would like to be able to quantify our uncertainty about $g(\hat{\theta})$ using what we know about the uncertainty of $\hat{\theta}$ itself. When n is large, this may be done using a first-order Taylor approximation of g, formalized as the delta method:

Theorem 17.3 (Delta method). If a function $g : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at θ_0 with $g'(\theta_0) \neq 0$, and if

$$\sqrt{n}(\hat{\theta} - \theta_0) \rightarrow \mathcal{N}(0, v(\theta_0))$$

in distribution as $n \rightarrow \infty$ for some variance $v(\theta_0)$, then

$$\sqrt{n}(g(\hat{\theta}) - g(\theta_0)) \rightarrow \mathcal{N}(0, (g'(\theta_0))^2 v(\theta_0))$$

in distribution as $n \rightarrow \infty$.

Proof sketch. We perform a Taylor expansion of $g(\hat{\theta})$ around $\hat{\theta} = \theta_0$:

$$g(\hat{\theta}) \approx g(\theta_0) + (\hat{\theta} - \theta_0)g'(\theta_0).$$

Rearranging yields

$$\sqrt{n} \left(g(\hat{\theta}) - g(\theta_0) \right) \approx \sqrt{n}(\hat{\theta} - \theta_0)g'(\theta_0),$$

and multiplying a mean-zero normal variable by a constant c scales its variance by c^2. \hfill \Box

Example 17.4 (Log-odds). Let $X_1, \ldots, X_n \overset{IID}{\sim}$ Bernoulli(p), and recall the plugin estimate of the log-odds $\log \frac{p}{1-p}$ given by $\log \frac{\bar{X}}{1-\bar{X}}$. By the Central Limit Theorem,

$$\sqrt{n}(\bar{X} - p) \rightarrow \mathcal{N}(0, p(1-p))$$

in distribution, where $p(1-p)$ is the variance of a Bernoulli(p) random variable. The function $g(p) = \log \frac{p}{1-p} = \log p - \log(1-p)$ has derivative

$$g'(p) = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}.$$
so by the delta method,
\[\sqrt{n} \left(\log \frac{\bar{X}}{1 - \bar{X}} - \log \frac{p}{1 - p} \right) \to \mathcal{N} \left(0, \frac{1}{p(1 - p)} \right). \]

In other words, our estimate of the log-odds of heads to tails is approximately normally distributed around the true log-odds \(\log \frac{p}{1 - p} \), with variance \(\frac{1}{np(1 - p)} \).

Suppose we toss this biased coin \(n = 100 \) times and observe 60 heads, i.e. \(\bar{X} = 0.6 \). We would estimate the log-odds by \(\log \frac{\bar{X}}{1 - \bar{X}} \approx 0.41 \), and we may estimate our standard error by \(\sqrt{\frac{1}{n\bar{X}(1 - \bar{X})}} \approx 0.20 \).

Example 17.5 (The Pareto mean). Let \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Pareto}(1, \theta) \), and recall that the MLE for \(\theta \) is \(\hat{\theta} = n / \sum_{i=1}^{n} \log X_i \). We may use the maximum-likelihood theory developed in Lecture 14 to understand the distribution of \(\hat{\theta} \). We compute (for \(x \geq 1 \))
\[\log f(x|\theta) = \log(\theta x^{-\theta-1}) = \log \theta - (\theta + 1) \log x \]
\[\frac{\partial}{\partial \theta} \log f(x|\theta) = \frac{1}{\theta} - \log x \]
\[\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) = -\frac{1}{\theta^2}. \]

Then the Fisher information is given by \(I(\theta) = 1/\theta^2 \), so
\[\sqrt{n}(\hat{\theta} - \theta) \to \mathcal{N}(0, \theta^2) \]
in distribution as \(n \to \infty \). For the function \(g(\theta) = \theta/(\theta - 1) \), we have
\[g'(\theta) = \frac{1}{\theta - 1} - \frac{\theta}{(\theta - 1)^2} = -\frac{1}{(\theta - 1)^2}. \]

So the delta method implies
\[\sqrt{n} \left(\frac{\hat{\theta}}{\theta - 1} - \frac{\theta}{\theta - 1} \right) \to \mathcal{N} \left(0, \frac{\theta^2}{(\theta - 1)^4} \right). \]

Say, for a data set with \(n = 1000 \) income values, we obtain the MLE \(\hat{\theta} = 1.5 \). We might then estimate the mean income as \(\hat{\theta}/(\theta - 1) = 3 \), and estimate our standard error by \(\sqrt{\frac{\theta^2}{n(\theta - 1)^4}} \approx 0.19 \).

What if we decided to just estimate the mean income by the sample mean, \(\bar{X} \)? Since \(\mathbb{E}[X_i] = \theta/(\theta - 1) \), the Central Limit Theorem implies
\[\sqrt{n} \left(\bar{X} - \frac{\theta}{\theta - 1} \right) \to \mathcal{N}(0, \text{Var}[X_i]) \]
in distribution. For \(\theta > 2 \), we may compute
\[\mathbb{E}[X_i^2] = \int_{1}^{\infty} x^2 \cdot \theta x^{-\theta-1} dx = \theta \frac{x^{-\theta+2}}{-\theta+2} \bigg|_{1}^{\infty} = \frac{\theta}{\theta - 2}, \]
so

\[\text{Var}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = \frac{\theta}{\theta - 2} - \left(\frac{\theta}{\theta - 1} \right)^2 = \frac{\theta}{(\theta - 1)^2(\theta - 2)}. \]

(If \(\theta \leq 2 \), the variance of \(X_i \) is actually infinite.) For any \(\theta \), this variance is greater than \(\theta^2/(\theta - 1)^4 \).

Thus if the Pareto model for income is correct, then our previous estimate \(\hat{\theta}/(\hat{\theta} - 1) \) is more accurate for the mean income than is the sample mean \(\bar{X} \). Intuitively, this is because the Pareto distribution is heavy-tailed, and the sample mean \(\bar{X} \) is heavily influenced by rare but extremely large data values. On the other hand, \(\hat{\theta} \) is estimating the shape of the Pareto distribution and estimating the mean by its relationship to this shape in the Pareto model. The formula for \(\hat{\theta} \) involves the values \(\log X_i \) rather than \(X_i \), so \(\hat{\theta} \) is not as heavily influenced by extremely large data values. Of course, the estimate \(\hat{\theta}/(\hat{\theta} - 1) \) relies strongly on the correctness of the Pareto model, whereas \(\bar{X} \) would be a valid estimate of the mean even if the Pareto model doesn’t hold true.

That the plugin estimate \(g(\hat{\theta}) \) performs better than \(\bar{X} \) in the previous example is not a coincidence—it is in certain senses the best we can do for estimating \(g(\theta) \). For example, we have the following more general version of the Cramer-Rao lower bound:

Theorem 17.6. For a parametric model \(\{ f(x|\theta) : \theta \in \Omega \} \) (satisfying certain mild regularity assumptions) where \(\theta \) is a single parameter, let \(g \) be any function differentiable on all of \(\Omega \), and let \(T \) be any unbiased estimator of \(g(\theta) \) based on data \(X_1, \ldots, X_n \text{IID} \sim f(x|\theta) \). Then

\[\text{Var}_\theta[T] \geq \frac{g'(\theta)^2}{nI(\theta)}. \]

The proof is identical to that of Theorem 15.4, except with the equation \(\theta = \mathbb{E}_\theta[T] \) replaced by \(g(\theta) = \mathbb{E}_\theta[T] \). (Differentiating this equation yields \(g'(\theta) = \mathbb{E}_\theta[TZ] = \text{Cov}_\theta[T, Z] \) as in Theorem 15.4.) An estimator \(T \) for \(g(\theta) \) that achieves this variance \(g'(\theta)^2/(nI(\theta)) \) is efficient. The plugin estimate \(g(\hat{\theta}) \) where \(\hat{\theta} \) is the MLE achieves this variance asymptotically, so we say it is **asymptotically efficient**. This theorem ensures that no unbiased estimator of \(g(\theta) \) can achieve variance much smaller than \(g(\hat{\theta}) \), when \(n \) is large, and in particular applies to the estimator \(T = \bar{X} \) of the previous example.