
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 20 — Bayesian analysis

Our treatment of parameter estimation thus far has assumed that θ is an unknown but
non-random quantity—it is some fixed parameter describing the true distribution of data,
and our goal was to determine this parameter. This is the called the frequentist paradigm
of statistical inference. In this and the next lecture, we will describe an alternative Bayesian
paradigm, in which θ itself is modeled as a random variable. The Bayesian paradigm natu-
rally incorporates our prior belief about the unknown parameter θ, and updates this belief
based on observed data.

20.1 Prior and posterior distributions

Recall that if X, Y are two random variables having joint PDF or PMF fX,Y (x, y), then the
marginal distribution of X is given by the PDF

fX(x) =

∫
fX,Y (x, y)dy

in the continuous case and by the PMF

fX(x) =
∑
y

fX,Y (x, y)

in the discrete case; this describes the probability distribution of X alone. The conditional
distribution of Y given X = x is defined by the PDF or PMF

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

and represents the probability distribution of Y if it is known that X = x. (This is a PDF or
PMF as a function of y, for any fixed x.) Defining similarly the marginal distribution fY (y)
of Y and the conditional distribution fX|Y (x|y) of X given Y = y, the joint PDF fX,Y (x, y)
factors in two ways as

fX,Y (x, y) = fY |X(y|x)fX(x) = fX|Y (x|y)fY (y).

In Bayesian analysis, before data is observed, the unknown parameter is modeled as a
random variable Θ having a probability distribution fΘ(θ), called the prior distribution.
This distribution represents our prior belief about the value of this parameter. Conditional
on Θ = θ, the observed data X is assumed to have distribution fX|Θ(x|θ), where fX|Θ(x|θ)
defines a parametric model with parameter θ, as in our previous lectures.1 The joint distri-
bution of Θ and X is then the product

fX,Θ(x, θ) = fX|Θ(x|θ)fΘ(θ),

1For notational simplicity, we are considering here a single data value X, but this extends naturally to
the case where X = (X1, . . . , Xn) is a data vector and fX|Θ(x|θ) is the joint distribution of X given θ.
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and the marginal distribution of X (in the continuous case) is

fX(x) =

∫
fX,Θ(x, θ)dθ =

∫
fX|Θ(x|θ)fΘ(θ)dθ.

The conditional distribution of Θ given X = x is

fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
=

fX|Θ(x|θ)fΘ(θ)∫
fX|Θ(x|θ′)fΘ(θ′)dθ′

. (20.1)

This is called the posterior distribution of Θ: It represents our knowledge about the
parameter Θ after having observed the data X. We often summarize the preceding equation
simply as

fΘ|X(θ|x) ∝ fX|Θ(x|θ)fΘ(θ) (20.2)

Posterior density ∝ Likelihood× Prior density

where the symbol ∝ hides the proportionality factor fX(x) =
∫
fX|Θ(x|θ′)fΘ(θ′)dθ′ which

does not depend on θ.

Example 20.1. Let P ∈ (0, 1) be the probability of heads for a biased coin, and let
X1, . . . , Xn be the outcomes of n tosses of this coin. If we do not have any prior information
about P , we might choose for its prior distribution Uniform(0, 1), having PDF fP (p) = 1

for all p ∈ (0, 1). Given P = p, we model X1, . . . , Xn
IID∼ Bernoulli(p). Then the joint

distribution of P,X1, . . . , Xn is given by

fX,P (x1, . . . , xn, p) = fX|P (x1, . . . , xn|p)fP (p)

=
n∏
i=1

pxi(1− p)1−xi × 1 = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi .

Let s = x1 + . . . + xn. The marginal distribution of X1, . . . , Xn is obtained by integrating
fX,P (x1, . . . , xn, p) over p:

fX(x1, . . . , xn) =

∫ 1

0

ps(1− p)n−sdp = B(s+ 1, n− s+ 1)

where B(x, y) is the Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Hence the posterior distribution of P given X1 = x1, . . . , Xn = xn has PDF

fP |X(p|x1, . . . , xn) =
fX,P (x1, . . . , xn, p)

fX(x1, . . . , xn)
=

1

B(s+ 1, n− s+ 1)
ps(1− p)n−s.

This is the PDF of the Beta(s + 1, n − s + 1) distribution2, so the posterior distribution of
P given X1 = x1, . . . , Xn = xn is Beta(s+ 1, n− s+ 1), where s = x1 + . . .+ xn.

2The Beta(α, β) distribution is a continuous distribution on (0, 1) with PDF f(x) = 1
B(α,β)x

α−1(1−x)β−1.
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We computed explicitly the marginal distribution fX(x1, . . . , xn) above, but this was not
necessary to arrive at the answer. Indeed, equation (20.2) gives

fP |X(p|x1, . . . , xn) ∝ fX|P (x1, . . . , xn|p)fP (p) = ps(1− p)n−s.

This tells us that the PDF of the posterior distribution of P is proportional to ps(1− p)n−s,
as a function of p. Then it must be the PDF of the Beta(s + 1, n − s + 1) distribution,
and the proportionality constant must be whatever constant is required to make this PDF
integrate to 1 over p ∈ (0, 1). We will repeatedly use this trick to simplify our calculations
of posterior distributions.

Example 20.2. Suppose now we have a prior belief that P is close to 1/2. There are
various prior distributions that we can choose to encode this belief; it will turn out to be
mathematically convenient to use the prior distribution Beta(α, α), which has mean 1/2 and
variance 1/(8α + 4). The constant α may be chosen depending on how confident we are, a
priori, that P is near 1/2—choosing α = 1 reduces to the Uniform(0, 1) prior of the previous
example, whereas choosing α > 1 yields a prior distribution more concentrated around 1/2.

The prior distribution Beta(α, α) has PDF fP (p) = 1
B(α,α)

pα−1(1−p)α−1. Then, applying

equation (20.2), the posterior distribution of P given X1 = x1, . . . , Xn = xn has PDF

fP |X(p|x1, . . . , xn) ∝ fX|P (x1, . . . , xn|p)fP (p)

∝ ps(1− p)n−s × pα−1(1− p)α−1 = ps+α−1(1− p)n−s+α−1,

where s = x1 + . . . + xn as before, and where the symbol ∝ hides any proportionality
constants that do not depend on p. This is proportional to the PDF of the distribution
Beta(s+ α, n− s+ α), so this Beta distribution is the posterior distribution of P .

In the previous example, the parametric form for the prior was (cleverly) chosen so that
the posterior would be of the same form—they were both Beta distributions. This type of
prior is called a conjugate prior for P in the Bernoulli model. Use of a conjugate prior
is mostly for mathematical and computational convenience—in principle, any prior fP (p)
on (0, 1) may be used. The resulting posterior distribution may be not be a simple named
distribution with a closed-form PDF, but the PDF may be computed numerically from
equation (20.1) by numerically evaluating the integral in the denominator of this equation.

Example 20.3. Let Λ ∈ (0,∞) be the parameter of the Poisson model X1, . . . , Xn
IID∼

Poisson(λ). As a prior distribution for Λ, let us take the Gamma distribution Gamma(α, β).
The prior and likelihood are given by

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ

fX|Λ(x1, . . . , xn|λ) =
n∏
i=1

λxie−λ

xi!
.

Dropping proportionality constants that do not depend on λ, the posterior distribution of Λ
given X1 = x1, . . . , Xn = xn is then

fΛ|X(λ|x1, . . . , xn) ∝ fX|Λ(x1, . . . , xn|λ)fΛ(λ) ∝
n∏
i=1

(λxie−λ)× λα−1e−βλ = λs+α−1e−(n+β)λ,
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where s = x1 + . . . + xn. This is proportional to the PDF of the Gamma(s + α, n + β)
distribution, so the posterior distribution of Λ must be Gamma(s+ α, n+ β).

As the prior and posterior are both Gamma distributions, the Gamma distribution is a
conjugate prior for Λ in the Poisson model.

20.2 Point estimates and credible intervals

To the Bayesian statistician, the posterior distribution is the complete answer to the question:
What is the value of θ? In many applications, though, we would still like to have a single
estimate θ̂, as well as an interval describing our uncertainty about θ.

The posterior mean and posterior mode are the mean and mode of the posterior
distribution of Θ; both of these are commonly used as a Bayesian estimate θ̂ for θ. A
100(1−α)% Bayesian credible interval is an interval I such that the posterior probability
P[Θ ∈ I | X] = 1−α, and is the Bayesian analogue to a frequentist confidence interval. One
common choice for I is simply the interval [θ(α/2), θ(1−α/2)] where θ(α/2) and θ(1−α/2) are the
α/2 and 1 − α/2 quantiles of the posterior distribution of Θ. Note that the interpretation
of a Bayesian credible interval is different from the interpretation of a frequentist confidence
interval—in the Bayesian framework, the parameter Θ is modeled as random, and 1 − α is
the probability that this random parameter Θ belongs to an interval that is fixed conditional
on the observed data.

Example 20.4. From Example 20.2, the posterior distribution of P is Beta(s+α, n−s+α).
The posterior mean is then (s+α)/(n+2α), and the posterior mode is (s+α−1)/(n+2α−2).
Both of these may be taken as a point estimate p̂ for p. The interval from the 0.05 to the
0.95 quantile of the Beta(s+α, n−s+α) distribution forms a 90% Bayesian credible interval
for p.

Example 20.5. From Example 20.3, the posterior distribution of Λ is Gamma(s+α, n+β).
The posterior mean and mode are then (s+ α)/(n+ β) and (s+ α− 1)/(n+ β), and either
may be used as a point estimate λ̂ for λ. The interval from the 0.05 to the 0.95 quantile of
the Gamma(s+ α, n+ β) distribution forms a 90% Bayesian credible interval for λ.
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