
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 22 — The generalized likelihood ratio test

In the next two lectures, we revisit the problem of hypothesis testing in the context
of parametric models. We’ll introduce the generalized likelihood ratio test and explore
applications to the analysis of categorical data.

22.1 GLRT for a simple null hypothesis

Let {f(x|θ) : θ ∈ Ω} be a parameteric model, and let θ0 ∈ Ω be a particular parameter
value. For testing

H0 : θ = θ0

H1 : θ 6= θ0

the generalized likelihood ratio test (GLRT) rejects for small values of the test statistic

Λ =
lik(θ0)

maxθ∈Ω lik(θ)
,

where lik(θ) is the likelihood function. (In the case of IID samples X1, . . . , Xn
IID∼ f(x|θ),

lik(θ) =
∏n

i=1 f(Xi|θ).) The numerator is the value of the likelihood at θ0, and the denomi-

nator is the value of the likelihood at the MLE θ̂. The level-α GLRT rejects H0 when Λ ≤ c,
where (as usual) c is chosen so that PH0 [Λ ≤ c] equals (or approximately equals) α.

Note that the GLRT differs from the likelihood ratio test discussed previously in the
context of the Neyman-Pearson lemma, where the denominator was instead given by lik(θ1)
for a simple alternative θ = θ1. The alternative H1 above is not simple, and the GLRT
replaces the denominator with the maximum value of the likelihood over all values of θ.

Example 22.1. Let X1, . . . , Xn
IID∼ N (θ, 1) and consider the problem of testing

H0 : θ = 0

H1 : θ 6= 0

The MLE for θ is θ̂ = X̄. We compute

lik(0) =
n∏
i=1

1√
2π
e−

X2
i

2

max
θ∈R

lik(θ) = lik(θ̂) =
n∏
i=1

1√
2π
e−

(Xi−X̄)2

2 .
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Then

Λ =
lik(0)

maxθ∈R lik(θ)
= exp

(
−

n∑
i=1

X2
i

2
+

n∑
i=1

(Xi − X̄)2

2

)

= exp

(
−

n∑
i=1

X2
i

2
+

n∑
i=1

X2
i − 2XiX̄ + X̄2

2

)
= exp

(
−n

2
X̄2
)
.

Rejecting for small values of Λ is the same as rejecting for large values of −2 log Λ = nX̄2.
UnderH0,

√
nX̄ ∼ N (0, 1), so nX̄2 ∼ χ2

1. Then the GLRT rejectsH0 when nX̄2 > χ2
1(α), the

upper-α point of the χ2
1 distribution. (This is the same as rejecting when |X̄| > z(α/2)/

√
n,

so the GLRT is equivalent to usual two-sided z-test based on X̄.)

In general, the exact sampling distribution of −2 log Λ under H0 may not have a simple
form as in the above example, but it may be approximated by a chi-squared distribution for
large n:

Theorem 22.2. Let {f(x|θ) : θ ∈ Ω} be a parametric model and let X1, . . . , Xn
IID∼ f(x|θ0).

Suppose θ0 is an interior point of Ω, and the regularity conditions of Theorems 14.1 and 15.2
(for consistency and asymptotic normality of the MLE) hold. Then

−2 log Λ→ χ2
k

in distribution as n→∞, where k = dim Ω is the dimension of Ω.

Sketch of proof. For simplicity, we consider only the case k = 1, so θ is a single parameter.
Letting l(θ) denote the log-likelihood function and θ̂ denote the MLE,

−2 log Λ = −2l(θ0) + 2l(θ̂).

Applying a Taylor expansion of l(θ0) around θ0 = θ̂,

l(θ0) ≈ l(θ̂) + (θ0 − θ̂)l′(θ̂) +
1

2
(θ0 − θ̂)2l′′(θ̂) ≈ l(θ̂)− 1

2
nI(θ0)(θ0 − θ̂)2,

where the second approximation uses l′(θ̂) = 0 and l′′(θ̂) ≈ −nI(θ̂) ≈ −nI(θ0). Then

−2 log Λ ≈ nI(θ0)(θ0 − θ̂)2.√
nI(θ0)(θ̂ − θ0) → N (0, 1) in distribution by asymptotic normality of the MLE, so the

continuous mapping theorem implies −2 log Λ ≈ nI(θ0)(θ0 − θ̂)2 → χ2
1 as desired.

This theorem implies that an approximate level-α test is given by rejecting H0 when
−2 log Λ > χ2

k(α), the upper-α point of the χ2
k distribution. The “dimension” k of Ω is the

number of free parameters in the model, or the number of parameters minus the number
of independent constraints. For instance, in Example 22.1, there is a single parameter θ,
so the dimension is 1. For a multinomial model with parameters (p1, . . . , pk), there are k
parameters but they are constrained to sum to 1, so the dimension is k − 1.
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22.2 GLRT for testing a sub-model

More generally, let Ω0 ⊂ Ω be a subset of the parameter space Ω, corresponding to a lower-
dimensional sub-model. For testing

H0 : θ ∈ Ω0

H1 : θ /∈ Ω0

the generalized likelihood ratio statistic is defined as

Λ =
maxθ∈Ω0 lik(θ)

maxθ∈Ω lik(θ)
.

In other words, Λ is the ratio of the values of the likelihood function evaluated at the MLE
in the sub-model and at the MLE in the full-model.

For large n, under any θ0 ∈ Ω0, −2 log Λ is approximately distributed as χ2
k where k is

the difference in dimensionality between Ω0 and Ω, and an approximate level-α test rejects
H0 when −2 log Λ > χ2

k(α):

Theorem 22.3. Let {f(x|θ) : θ ∈ Ω} be a parametric model, and let X1, . . . , Xn
IID∼ f(x|θ0)

where θ0 ∈ Ω0. Suppose θ0 is an interior point of both Ω0 and Ω, and the regularity conditions
of Theorems 14.1 and 15.2 hold for both the full model {f(x|θ) : θ ∈ Ω} and the sub-model
{f(x|θ) : θ ∈ Ω0}. Then

−2 log Λ→ χ2
k

in distribution as n→∞, where k = dim Ω− dim Ω0.

Example 22.4 (Hardy-Weinberg equilibrium). At a single diallelic locus in the genome
with two possible alleles A and a, any individual can have genotype AA, Aa, or aa. If we
randomly select n individuals from a population, we may model the numbers of individuals
with these genotypes as (NAA, NAa, Naa) ∼ Multinomial(n, (pAA, pAa, paa)).

When the alleles A and a are present in the population with proportions θ and 1 − θ,
then under an assumption of random mating, quantitative genetics theory predicts that pAA,
pAa, and paa should be given by pAA = θ2, pAa = 2θ(1− θ), and paa = (1− θ)2—this is called
the Hardy-Weinberg equilibrium. In practice we do not know θ, but we may still test the
null hypothesis that Hardy-Weinberg equilibrium holds for some θ:

H0 : pAA = θ2, pAa = 2θ(1− θ), paa = (1− θ)2 for some θ ∈ (0, 1).

This null hypothesis corresponds to a 1-dimensional sub-model (with a single free parameter
θ) inside the 2-dimensional multinomial model (specified by general parameters pAA, pAa, paa
summing to 1). We may test H0 using the GLRT:

The multinomial likelihood is given by

l(pAA, pAa, paa) =

(
n

NAA, NAa, Naa

)
pNAA
AA pNAa

Aa pNaa
aa .
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Letting p̂AA, p̂Aa, p̂aa denote the full-model MLEs and p̂0,AA, p̂0,Aa, p̂0,aa denote the sub-model
MLEs, the generalized likelihood ratio is

Λ =

(
p̂0,AA

p̂AA

)NAA
(
p̂0,Aa

p̂Aa

)NAa
(
p̂0,aa

p̂aa

)Naa

,

so

−2 log Λ = 2NAA log
p̂AA
p̂0,AA

+ 2NAa log
p̂Aa
p̂0,Aa

+ 2Naa log
p̂aa
p̂0,aa

. (22.1)

The full-model MLEs are given by p̂AA = NAA/n, p̂Aa = NAa/n, and p̂aa = Naa/n,
by Example 13.4 from Lecture 13. To find the sub-model MLEs, note that under H0, the
multinomial likelihood as a function of θ is

lik(θ) =

(
n

NAA, NAa, Naa

)
(θ2)NAA(2θ(1− θ))NAa((1− θ)2)Naa

=

(
n

NAA, NAa, Naa

)
2NAaθ2NAA+NAa(1− θ)NAa+2Naa .

Maximizing the likelihood over parameters (pAA, pAa, paa) belonging to the sub-model is
equivalent to maximizing the above over θ. Differentiating the logarithm of the above like-
lihood and setting it equal to 0, we obtain the MLE

θ̂ =
2NAA +NAa

2NAA + 2NAa + 2Naa

=
2NAA +NAa

2n

for θ, which yields the sub-model MLEs

p̂0,AA =

(
2NAA +NAa

2n

)2

p̂0,Aa = 2

(
2NAA +NAa

2n

)(
NAa + 2Naa

2n

)
p̂0,aa =

(
NAa + 2Naa

2n

)2

.

Substituting these expressions into equation (22.1) yields the formula for −2 log Λ in terms
of the observed counts NAA, NAa, Naa. The difference in dimensionality of the two models is
2− 1 = 1, so an approximate level-α test would reject H0 when −2 log Λ exceeds χ2

1(α).
Rice provides an example (Example 8.5.1A) of genotype data from a population of n =

1029 individuals in Hong Kong, in which the alleles determine the presence of an antigen
in the red blood cell. In this example, NAA = 342, NAa = 500, Naa = 187, and we may
calculate −2 log Λ = 0.0325. Letting F denote the χ2

1 CDF, the p-value of our test is
1 − F (0.0325) = 0.86, so there is no significant evidence of deviation from the Hardy-
Weinberg equilibrium.
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