
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 26 — Logistic regression

26.1 The logistic regression model

Example 26.1. An internet company would like to understand what factors influence
whether a visitor to a webpage clicks on an advertisement. Suppose it has available his-
torical data of n ad impressions, each impression corresponding to a single ad being shown
to a single visitor. For the ith impression, let Yi ∈ {0, 1} be such that Yi = 1 if the visitor
clicked on the ad, and Yi = 0 otherwise. The internet company also has available various
attributes for each impression, such as the position and size of the ad on the webpage, the
company or product being advertised, the age and gender of the visitor, the time of day,
the month of the year, etc. For each ith impression, suppose that all of these attributes are
encoded numerically as p covariates xi1, . . . , xip ∈ R.

The logistic regression model assumes each response Yi is an independent random
variable with distribution Bernoulli(pi), where the log-odds corresponding to pi is modeled
as a linear combination of the covariates plus a possible intercept term:

log
pi

1− pi
= β0 + β1xi1 + . . .+ βpxip.

The intercept β0 represents the “baseline” log-odds of the visitor clicking on the ad, if all of
the covariates take value 0. Each coefficient βj represents the amount of increase or decrease
in the log-odds, if the value of the covariate xij is increased by 1 unit. The above may be
equivalently written as

P[Yi = 1] = pi =
eβ0+β1xi1+...+βpxip

1 + eβ0+β1xi1+...+βpxip
. (26.1)

As in the case of the linear model, we will treat the covariates as fixed and known quantities.
The unknown parameters are the regression coefficients β = (β0, . . . , βp).

When there is only one covariate, p = 1, we simply write x1 = x11, . . . , xn = xn1. The
the picture below illustrates the logistic regression model, where the red points correspond
to the data values (x1, Y1), . . . , (xn, Yn) of the covariate and response, and the black curve

shows the probability function p(x) = eβ0+β1x

1+eβ0+β1x
:
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26.2 Statistical inference

We will explore the following inferential questions:

• Estimate the regression coefficiets β0, β1, . . . , βp

• Estimate the “conversion” probability that a new impression, with covariate values
(x̃1, . . . , x̃p), will lead to click on the ad

• Test whether βj = 0 for a particular covariate j, say the age of the visitor, and provide
a confidence interval for βj

Since the responses Y1, . . . , Yn are independent Bernoulli random variables, the likelihood
for the logistic regression model is given by

lik(β0, . . . , βp) =
n∏
i=1

pYii (1− pi)1−Yi =
n∏
i=1

(1− pi)
(

pi
1− pi

)Yi
,

where pi is defined as a function of β0, . . . , βp and the covariates xi1, . . . , xip by equation
(26.1). Then, introducing for convenience a covariate xi0 ≡ 1 for all i that captures the
intercept term, the log-likelihood is

l(β0, . . . , βp) =
n∑
i=1

Yi log
pi

1− pi
+ log(1− pi) =

n∑
i=1

(
Yi

p∑
j=0

βjxij − log
(

1 + e
∑p
j=0 βjxij

))
.

To estimate the parameters β0, . . . , βp, we may compute the MLE. For the function
f(x) = log(1 + ex), f ′(x) = ex

1+ex
= 1 − 1

1+ex
. Then setting the partial derivatives of the

log-likelihood equal to 0 and applying the chain rule yields the equations (for m = 0, . . . , p)

0 =
∂l

∂βm
=

n∑
i=1

xim

(
Yi −

e
∑p
j=0 βjxij

1 + e
∑p
j=0 βjxij

)
. (26.2)
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These equations may be solved numerically (e.g. by Newton-Raphson) to obtain the MLEs
β̂0, . . . , β̂p. To estimate the conversion probability for a new impression with covariates
x̃1, . . . , x̃p, we may use the plugin estimate

p̂ =
eβ̂0+β̂1x̃1+...+β̂px̃p

1 + eβ̂0+β̂1x̃1+...+β̂px̃p
. (26.3)

To test if a particular coefficient is 0, say H0 : βp = 0, one method is using the generalized
likelihood ratio test. This null hypothesis corresponds to a sub-model with one fewer free
parameter. We may calculate the sub-model MLEs β̂0,0, . . . , β̂0,p−1 from the same score
equations as (26.2) except with the pth covariate removed, and use the generalized likelihood
ratio statistic

−2 log Λ = −2 log
lik(β̂0,0, . . . , β̂0,p−1, 0)

lik(β̂0, . . . , β̂p)
.

When the number of impressions n is large, we may perform an approximate level-α test of
H0 by rejecting H0 when D > χ2

1(α), since the difference between model dimensionalities
here is 1.

We may obtain a confidence interval for βj from the MLE estimate β̂j and an estimate of
its standard error: We compute the Fisher information IY(β) = −Eβ[∇2l(β)] by calculating
the second partial derivatives of l: For f(x) = log(1 + ex), f ′′(x) = ex

(1+ex)2
. Then

∂2l

∂βm∂βl
= −

n∑
i=1

ximxil
e
∑p
j=0 βjxij

(1 + e
∑p
j=0 βjxij)2

= −XT
mWXl,

where we have set Xj = (x1j, . . . , xnj) as the jth column of the matrix of covariates as in
Lecture 25, and defined the n× n diagonal matrix

W := W (β) = diag

(
e
∑p
j=0 βjx1j

(1 + e
∑p
j=0 βjx1j)2

, . . . ,
e
∑p
j=0 βjxnj

(1 + e
∑p
j=0 βjxnj)2

)
.

So ∇2l(β) = −XTWX, IY(β) = XTWX, and the approximate sampling distribution of β̂
for large n is N (β, (XTWX)−1). Letting Ŵ = W (β̂) be the plugin estimate of the diagonal

matrix W , we may estimate the standard error of β̂j by ŝej =
√

((XT ŴX)−1)jj, and obtain

a 95% confidence interval for βj as β̂j ± z(0.025)ŝej.

Remark 26.2. A word of caution regarding model misspecification: The above standard er-
ror estimates ŝej (which are the standard errors reported by most logistic regression software)
are only expected to be accurate when the logistic regression model is correctly specified—
that is, when the Yi’s are truly independent random variables with distribution Bernoulli(pi),
where the log-odds for each pi is the same linear combination of the covariates. This is be-
cause, as in the case of n IID observations, the covariance of β̂ is given by the inverse Fisher
information only in a correctly specified model.

Logistic regression is still oftentimes used as a tool for binary classification problems even
if the model does not yield an extremely accurate fit to the data, as long as the model has
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good classification accuracy. In such settings, the MLE β̂ represents the “closest” logistic
regression model (in the given covariates) to the true distribution of Y1, . . . , Yn, in the sense of
KL-divergence as in Lecture 16. The standard error for β̂j may be robustly estimated using
either a sandwich estimator or the non-parametric bootstrap. For the logistic regression
model, the sandwich estimate of the covariance matrix of β̂ is given by1

(XT ŴX)−1(XT W̃X)(XT ŴX)−1,

where W̃ = diag((Y1−p̂1)2, . . . , (Yn−p̂n)2) and p̂i is the fit probability for the ith observation,
defined by the right side of equation (26.1) with β̂ in place of β. The (j, j) element of this
matrix gives a sandwich estimate for the variance of β̂j. Alternatively, one may use the pairs
bootstrap, which pairs the covariates and response for each ith observation into a single
data vector (xi1, . . . , xip, Yi), and then draws bootstrap samples by randomly selecting, with
replacement, n of these vectors. The logistic regression model is fit to each such bootstrap
sample to yield an MLE β̂∗, and the standard error of β̂j is estimated by the empirical

standard deviation of β̂∗j across bootstrap samples.

1See Liang and Zeger, “Longitudinal data analysis using generalized linear models” or Agresti, “Categor-
ical Data Analysis” Section 12.3.3.
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