
STATS 200: Solutions to Homework 3∗

1 The t1 distribution.
(a) By definition of the t distribution, T has the same distribution as X√

U
where X ∼

N (0, 1), U ∼ χ2
1, and X and U are independent. By definition of the χ2 distribution,

U has the same distribution as Y 2 where Y ∼ N (0, 1). Therefore T has the same
distribution as X√

Y 2
= X
|Y | .

Here are two different methods to show X
|Y | has the same distribution as X

Y :

(1) Let A = |X|
|Y | , B = sign(X), C = sign(X)

sign(Y ) . (Here sign(x) = 1 if x > 0 and
sign(x) = −1 if x < 0.) Then X

|Y | = AB and X
Y = AC. |X| and sign(X) are

independent, because sign(X) = ±1 each with probability 1/2 independently of |X|.
Similarly |Y | and sign(Y ) are independent, so |X|, sign(X), |Y |, and sign(Y ) are all
independent. Then A is independent of B, and A is also independent of C. But B and
C have the same distribution (they are both ±1 with probability 1/2), so therefore AB
and AC have the same distribution.

(2) For any t ∈ R,

P
[
X

|Y |
≤ t
]

= P[X ≤ t|Y |] = P[X ≤ tY, Y > 0] + P[X ≤ −tY, Y < 0],

and

P
[
X

Y
≤ t
]

= P[X ≤ tY, Y > 0] + P[X ≥ tY, Y < 0]

= P[X ≤ tY, Y > 0] + P[−X ≤ −tY, Y < 0].

Since (X,Y ) has the same distribution as (−X,Y ), the above implies

P
[
X

|Y |
≤ t
]

= P
[
X

Y
≤ t
]
.

So the CDFs of X
|Y | and X

Y are the same.

∗Edited from the solutions by Zhenpeng Zhou; thanks to Zhenpeng for sharing.
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(b) Noting f(x) = f(−x), we compute

E[|T |] =

∫ ∞
−∞
|x|f(x)dx = 2

∫ ∞
0

x
1

π

1

x2 + 1
dx

=
1

π

∫ ∞
0

1

x2 + 1
d(x2 + 1) =

1

π
ln
(
x2 + 1

)∣∣∞
0

=∞.

Also,

E[T 2] =

∫ ∞
−∞

x2f(x)dx = 2

∫ ∞
0

x2 1

π

1

x2 + 1
dx =

2

π

∫ ∞
0

x2

x2 + 1
dx,

which equals∞ since x2

x2+1 → 1 as x→∞.

So T does not have a well-defined (finite) mean or variance, and the LLN and CLT
both do not apply. (In fact, it may be shown that 1

n (T1 + . . . + Tn) does not converge
to 0 but rather 1

n (T1 + . . .+ Tn) ∼ t1 for any n.)

2 The tn distribution for large n.

(a) We may write Un =
∑n
i=1X

2
i , where X1, . . . , Xn

IID∼ N (0, 1). Then the LLN
implies 1

nUn → E[X2
i ] = 1 in probability as n → ∞. The function x 7→ 1/

√
x is

continuous (at every x > 0), so by the Continuous Mapping Theorem

1√
1
nUn

→ 1

in probability as n→∞.
(b) We may write Tn = 1√

1
nUn

Zn where Zn ∼ N (0, 1), Un ∼ χ2
n, and Zn and

Un are independent. By part (a), 1√
1
nUn

→ 1 in probability. Clearly Zn → N (0, 1) in

distribution, since the distribution of Zn does not change with n. Then Tn → N (0, 1)
in distribution by Slutsky’s lemma.

(c) The T statistic may be written as

T =
σ

S

√
nX̄

σ
.

By the CLT,
√
nX̄
σ → N (0, 1) in distribution. As S

σ ≈ 1, the distribution of T is
approximately N (0, 1) for large n. (Formally, Sσ → 1 in probability, so by Slutsky’s
lemma T → N (0, 1) in distribution.) The one-sided t-test rejects when T > tn−1(α);
by part (b), the tn−1 distribution is close to N (0, 1) for large n, so tn−1(α) is close to
z(α). Then P[T > tn−1(α)] ≈ α. The argument for a two-sided test is the same.
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3 Comparing binomial proportions.

(a) Let X1, . . . , Xn
IID∼ Bernoulli(pA) and Y1, . . . , Ym

IID∼ Bernoulli(pB) be indica-
tors of whether each visitor clicked on the ad. We wish to test

H0 : pA = pB

H1 : pA > pB

Both hypotheses are composite, as they do not specify the exact value of pA or pB .

(b) As np̂A ∼ Binomial(n, pA), we have Var[np̂A] = npA(1− pA) so Var[p̂A] =
pA(1−pA)

n . Similarly Var[p̂B ] = pB(1−pB)
m . Since p̂A and p̂B are independent,

Var[p̂A− p̂B ] = Var[p̂A]+Var[−p̂B ] = Var[p̂A]+Var[p̂B ] = pA(1−pA)
n + pB(1−pB)

m .

Under H0, pA = pB = p for some p ∈ (0, 1), and this variance is p(1 − p)( 1
n + 1

m ).
This is not the same for all data distributions in H0, as it depends on p. (So we cannot
perform a test of H0 directly using the test statistic p̂A − p̂B .)

(c) One way of estimating the variance is to take

V̂ =
p̂A(1− p̂A)

n
+
p̂B(1− p̂B)

m
.

Another way (since pA = pB under H0) is to first estimate a pooled sample proportion

p̂ =
p̂An+ p̂Bm

n+m

and then estimate the variance as

V̂ = p̂ (1− p̂)
(

1

n
+

1

m

)
.

(Both ways are reasonable under H0.)
Under H0, pA = pB = p for some p ∈ (0, 1), so the CLT implies

√
n(p̂A−p)√
p(1−p)

→

N (0, 1) and
√
m(p̂B−p)√
p(1−p)

→ N (0, 1) in distribution as n,m→∞. So for large n andm,

the distributions of p̂A and p̂B are approximately N (p, p(1−p)n ) and N (p, p(1−p)m ). p̂A
and p̂B are independent, so their difference is distributed approximately asN (0, p(1−
p)( 1

n + 1
m )). We may write the test statistic T as

T =

√
p(1− p)( 1

n + 1
m )√

V̂

p̂A − p̂B√
p(1− p)( 1

n + 1
m )

.

Since
√
p(1−p)( 1

n + 1
m )√

V̂
≈ 1 with high probability for large n andm, T is approximately

distributed as N (0, 1), and an asymptotic level-α test rejects H0 for T > z(α).
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4 Sign test.
(a) For a density function f with median 0 but is skewed right, such as in the figure
below, positive values of X1, . . . , Xn would tend to have higher rank than negative
values, so the Wilcoxon signed rank statistic would tend to take larger values under f
than under any density function g that is symmetric about 0.

(b) Let Yi = 1 ifXi > 0 and Yi = 0 otherwise. Since f has median 0, P[Yi = 1] =
P[Xi > 0] = 1/2. Then

S =

n∑
i=1

Yi ∼ Binomial(n, 1
2 ).

This distribution is the same for any PDF f with median 0. A test of H0 versus H1

should reject for large values of S. To achieve level-α, it should reject when S ≥ k,
where k is a value such that P[S ≥ k] = α under H0. This is exactly the value of k
given in the problem statement.

(c) Note E[Yi] = 1/2, Var[Yi] = 1/4, and S
n = Ȳ . Then by the CLT

√
4n

(
S

n
− 1

2

)
→ N (0, 1)

in distribution as n→∞. So for large n,

α ≈ P
[√

4n

(
S

n
− 1

2

)
> z(α)

]
= P

[
S

n
>

1

2
+

1√
4n
z(α)

]
= P

[
S >

n

2
+

√
n

4
z(α)

]
,

and we may take as an approximate rejection threshold n
2 +

√
n
4 z(α).
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5 Power comparisons.
(a) The code below runs the simulations for the null case (µ = 0) as well as for µ =
0.1, 0.2, 0.3, 0.4:

set.seed(1)
n = 100
B = 10000
for (mu in c(0,0.1,0.2,0.3,0.4)) {

output.Z = numeric(B)
output.T = numeric(B)
output.W = numeric(B)
output.S = numeric(B)
for (i in 1:B) {

X = rnorm(n, mean=mu, sd=1)
if (mean(X) > 1/sqrt(n)*qnorm(0.95)) {
output.Z[i] = 1

} else {
output.Z[i] = 0

}
T = t.test(X)$statistic
if (T > qt(0.95,df=n-1)) {

output.T[i] = 1
} else {

output.T[i] = 0
}
W = wilcox.test(X)$statistic
if (W > n*(n+1)/4+sqrt(n*(n+1)*(2*n+1)/24)*qnorm(0.95)) {
output.W[i] = 1

} else {
output.W[i] = 0

}
S = length(which(X>0))
if (S > n/2+sqrt(n/4)*qnorm(0.95)) {

output.S[i] = 1
} else {

output.S[i] = 0
}

}
print(paste(’mu = ’, mu))
print(paste(’Z: ’, mean(output.Z)))
print(paste(’T: ’, mean(output.T)))
print(paste(’W: ’, mean(output.W)))
print(paste(’S: ’, mean(output.S)))

}

Under H0 (case µ = 0), we obtained the results:
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Test stat Type I Error
Likelihood ratio test 0.0507
t-test 0.0505
Wilcoxon signed rank test 0.053
Sign test 0.0441

(b) Under these alternatives, we obtained the results:

Test stat Power over N (µ, 1)
µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4

Likelihood ratio test 0.2631 0.6356 0.913 0.9895
t-test 0.261 0.6306 0.9085 0.9885
Wilcoxon signed rank test 0.252 0.6164 0.8978 0.9847
Sign test 0.1805 0.4617 0.7521 0.9318

(c) The powers of the tests against N (µ, 1) decrease as we increasingly relax the
distributional assumptions (fromN (0, 1) toN (0, σ2) to any symmetric PDF f about 0
to any PDF f with median 0). The sign test makes the fewest distributional assumptions
under H0, but its power is substantially lower than the other three tests. Hence if
we have good reason to believe that the data distribution under H0 is symmetric (for
example, if each data value is the difference of paired samples (Xi, Yi), and (Xi, Yi)
should have the same distribution as (Yi, Xi) underH0), then we should at least opt for
using the Wilcoxon test. The difference in powers between the Wilcoxon test, t-test,
and the most-powerful likelihood ratio test is indeed very small, which supports Rice’s
claim (at least for the tested sample size n = 100).
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