
HOMEWORK 8 SOLUTIONS

ALEX CHIN

1. Fitting a Bradley-Terry model.

(a) First read in the data.

table = read.csv('NBA_record.csv')
teams = read.csv('teams.txt', header=FALSE, as.is=TRUE)
num_games = nrow(table)
num_teams = nrow(teams)

The Bradley-Terry log-likelihood, as defined in Lecture 24, is

n∑
m=1

Ym(α+ βim − βjm)− log(1 + eα+βim−βjm ).

Let’s write a function to compute this.

loglik = function(theta, Home, Away, Y) {
alpha = theta[1]
beta = c(0, theta[-1])
params = alpha + beta[Home] - beta[Away]
return(sum(Y * params - log(1 + exp(params))))

}

We can train the model using the optim function.

theta0 = rep(0, num_teams)
result = optim(theta0, loglik,

Home=table$Home, Away=table$Away, Y=table$Y,
method='BFGS', control=list('fnscale'=-1))

Now we print the 8 teams with the highest Bradley-Terry scores:

coefs = c(0, result$par[-1])
ranking = order(coefs, decreasing=TRUE)
data.frame(team=teams[ranking[1:8],],

score=coefs[ranking[1:8]])

Stats 200: Autumn 2016.

1



## team score
## 1 10 Golden State Warriors 1.90274553
## 2 27 San Antonio Spurs 1.29320880
## 3 6 Cleveland Cavaliers 0.48246253
## 4 28 Toronto Raptors 0.42940629
## 5 21 Oklahoma City Thunder 0.42045913
## 6 13 Los Angeles Clippers 0.28898908
## 7 1 Atlanta Hawks 0.00000000
## 8 16 Miami Heat -0.01215086

The intercept term indicates the home court advantage:

result$par[1]

## [1] 0.4626864

So the home team has a α̂ = 0.4626864 greater log-odds of winning than
the away team. This means, for example, that we can predict the home
team has a e−α̂ = 0.62959 chance of winning if the two teams are evenly
matched.

(b) Let’s define the log-likelihood function without an intercept and run the
optimization.

loglik_noalpha = function(theta, Home, Away, Y) {
beta = c(0, theta)
params = beta[Home] - beta[Away]
return(sum(Y * params - log(1 + exp(params))))

}

theta0 = rep(0, num_teams - 1)
result_noalpha = optim(theta0, loglik_noalpha,

Home=table$Home, Away=table$Away, Y=table$Y,
method='BFGS', control=list('fnscale'=-1))

We can take a look at the optimal log-likelihood values:

print(result$value)

## [1] -680.2417

print(result_noalpha$value)

## [1] -705.08
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Now we can perform a generalized likelihood ratio test, using a χ2 cutoff
with 1 degree of freedom.

statistic = -2 * (result_noalpha$value - result$value)
p_value = 1 - pchisq(statistic, df=1)
print(statistic)

## [1] 49.67658

print(p_value)

## [1] 1.812994e-12

The p-value is extremely small, so we can safely reject the null hypothesis
that there is no home court advantage.

(c) Logistic regression models the log-odds of the probability of winning as
linear in the covariates,

log
pm

1− pm
= α+ β1xm,1 + · · ·+ β30, xm,30,

Taking the specified design matrix reduces the above expression to

log
pm

1− pm
= α+ βim − βjm

where im and jm are the indices for the home and away teams that played
in game m, respectively. From here we can see that pm = pimjm , the
Bradley-Terry specification of the probability of team im beating team jm.
Above, the interpretation of the first estimated coefficient is the home court
advantage and the interpretation of the tenth coefficient is the log-odds
probability of team 10 beating team 1 at a neutral venue.

(d) First we build the model matrix.

X = matrix(0, nrow=num_games, ncol=num_teams)
for (m in 1:num_games) {

X[m, 1] = 1
home = table$Home[m]; if (home != 1) X[m, home] = 1
away = table$Away[m]; if (away != 1) X[m, away] = -1

}

We run the logistic regression, and verify that the coefficients obtained
from optim and glm.fit match.

3



model = glm.fit(X, table$Y, family=binomial())
data.frame(label=c("intercept", teams[-1,1]),

optim=result$par,
glm=model$coefficients)

## label optim glm
## 1 intercept 0.46268643 0.46258355
## 2 2 Boston Celtics -0.04631213 -0.04648549
## 3 3 Brooklyn Nets -1.61273464 -1.61284430
## 4 4 Charlotte Hornets -0.04467431 -0.04484980
## 5 5 Chicago Bulls -0.34269585 -0.34288850
## 6 6 Cleveland Cavaliers 0.48246253 0.48230358
## 7 7 Dallas Mavericks -0.30639779 -0.30652209
## 8 8 Denver Nuggets -0.84037107 -0.84055558
## 9 9 Detroit Pistons -0.25148051 -0.25161339
## 10 10 Golden State Warriors 1.90274553 1.90258509
## 11 11 Houston Rockets -0.38169132 -0.38186156
## 12 12 Indiana Pacers -0.17399666 -0.17414817
## 13 13 Los Angeles Clippers 0.28898908 0.28888477
## 14 14 Los Angeles Lakers -1.87604922 -1.87617349
## 15 15 Memphis Grizzlies -0.34574217 -0.34587860
## 16 16 Miami Heat -0.01215086 -0.01229379
## 17 17 Milwaukee Bucks -0.82875230 -0.82893701
## 18 18 Minnesota Timberwolves -1.08557680 -1.08567514
## 19 19 New Orleans Pelicans -1.02941242 -1.02954690
## 20 20 New York Knicks -0.92056670 -0.92063507
## 21 21 Oklahoma City Thunder 0.42045913 0.42029832
## 22 22 Orlando Magic -0.75226660 -0.75242422
## 23 23 Philadelphia 76ers -2.55271651 -2.55279786
## 24 24 Phoenix Suns -1.47403237 -1.47425350
## 25 25 Portland Trail Blazers -0.21387094 -0.21399684
## 26 26 Sacramento Kings -0.85175169 -0.85185252
## 27 27 San Antonio Spurs 1.29320880 1.29305390
## 28 28 Toronto Raptors 0.42940629 0.42930221
## 29 29 Utah Jazz -0.45062893 -0.45075953
## 30 30 Washington Wizards -0.39769361 -0.39782372

2. A heteroscedastic linear model.

(a) The log-likelihood is

`(β) = −n
2
log 2π +

n∑
i=1

σi −
n∑
i=1

1

2σ2
i

(Yi − βxi)2,
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so that the MLE β̂ minimizes the weighted sum of squares

n∑
i=1

1

σ2
i

(Yi − βxi)2.

Taking derivatives and solving for zero gives the explicit solution

β̂ =

∑n
i=1 xiYi/σ

2
i∑n

i=1 x
2
i /σ

2
i

.

(b) The estimator has mean

E[β̂] =
1∑n

i=1 x
2
i /σ

2
i

n∑
i=1

xi
σ2
i

E[Yi] =
1∑n

i=1 x
2
i /σ

2
i

n∑
i=1

xi
σ2
i

βxi = β,

so it is unbiased.

The variance is

V[β̂] =

∑n
i=1 x

2
iV[Yi]/σ

4
i

(
∑n
i=1 x

2
i /σ

2
i )

2 =

∑n
i=1 x

2
iσ

2
i /σ

4
i

(
∑n
i=1 x

2
i /σ

2
i )

2 =
1∑n

i=1 x
2
i /σ

2
i

,

using V[Yi] = σ2
i .

(c) Taking derivatives, we have

`′(β) =

n∑
i=1

xi
σ2
i

(Yi − βxi)

`′′(β) = −
n∑
i=1

x2i
σ2
i

.

Therefore, IY(β) = −Eβ [`′′(β)] =
∑n
i=1 x

2
i /σ

2
i . From part (b), this is exactly

1/V[β̂].

(d) Taking the derivative of
∑
i(Yi − βxi)2 and solving gives

β̃ =

∑n
i=1 xiYi∑n
i=1 x

2
i

,

and its expectation is

E[β̃] =

∑n
i=1 xiE[Yi]∑n
i=1 x

2
i

=

∑n
i=1 βx

2
i∑n

i=1 x
2
i

= β.

(e) The variance of β̃ is given by

V[β̃] =

∑n
i=1 x

2
iV[Yi]

(
∑n
i=1 x

2
i )

2
=

∑n
i=1 x

2
iσ

2
i

(
∑n
i=1 x

2
i )

2
.
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If σ2
i = σ2

0 , then this reduces to

V[β̃] =
σ2
0∑n

i=1 x
2
i

.

In our case the model matrix X is a single vector (x1, . . . , xn)
T , so that

(XTX)−1 = 1/
∑n
i=1 x

2
i . Hence the variance formula above is consistent

with the general formula σ2
0(X

TX)−1.

(f) Applying the Cauchy-Schwarz inequality with ai = |xiσi| and bi = |xi/σi|,
we obtain the inequality(

n∑
i=1

x2iσ
2
i

)(
n∑
i=1

x2i
σ2
i

)
≥

(
n∑
i=1

x2i

)2

,

and hence, rearranging terms,

V[β̃] =

∑n
i=1 x

2
iσ

2
i

(
∑n
i=1 x

2
i )

2
≥ 1∑n

i=1 x
2
i /σ

2
i

= V[β̂].

The Cramèr-Rao lower bound states that any unbiased estimator has vari-
ance no smaller than the inverse Fisher information. Since the variance of β̂
attains the lower bound by part (c), and β̃ is unbiased, the above inequality
is expected.

(g) Plugging in (Yi − β̃xi)2 for σ2
i in the variance expression in part (e) gives

the plugin standard error estimate

ŝe(β̃) =

√∑n
i=1 x

2
i (Yi − β̃xi)2

(
∑n
i=1 x

2
i )

2
.

(h) We run the simulation.

set.seed(2016)
x = (1:100) / 100
sigma = (1:100) / 100
B = 10000

estimates = numeric(B)
default_se = numeric(B)
robust_se = numeric(B)

get_robust_se = function(x, Y, estimate) {
sqrt(sum(x^2 * (Y - estimate * x)^2)) / sum(x^2)

}
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for (i in 1:B) {
Y = x + rnorm(n=100, mean=0, sd=sigma)
model = lm(Y ~ x + 0)
estimates[i] = summary(model)[["coefficients"]][["x","Estimate"]]
default_se[i] = summary(model)[["coefficients"]][["x","Std. Error"]]
robust_se[i] = get_robust_se(x, Y, estimates[i])

}

true_se = sd(estimates)
print(true_se)

## [1] 0.1326056

hist(robust_se, col=rgb(0, 0, 1, 0.3), breaks=20,
xlim=c(0.06, 0.2), ylim=c(0, 2500),
xlab="standard error", ylab="count",
main="standard errors robust to heteroscedasticity")

hist(default_se, col=rgb(1, 0, 0, 0.3), breaks=20, add=TRUE)
abline(v=true_se, col="blue", lwd=5)
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Above, the default standard error estimates from lm are printed in red and
the robust plugin standard error estimates from part (g) are printed in blue,
with the solid blue line indicating the true empirical standard error. We see
that the robust estimates are more accurate. Notably, the default estimates
are too small, which would produce too narrow confidence intervals and
too small p-values if we were to use them for our coefficient estimates.
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