Validation set approach

Goal: Estimate the test error for a supervised learning method.

Strategy:

- Split the data in two parts.
- Train the method in the first part.
- Compute the error on the second part.
Validation set approach

Polynomial regression to estimate mpg from horsepower in the Auto data.

Problems: 1. Every split yields a different estimate of the error.
2. Only a subset of points is used to evaluate the model.
Leave one out cross-validation

- For every $i = 1, \ldots, n$:
 - train the model on every point except i,
 - compute the test error on the held out point.

- Average the test errors.
Leave one out cross-validation

- For every $i = 1, \ldots, n$:
 - train the model on every point except i,
 - compute the test error on the held out point.
- Average the test errors.

$$CV(n) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

Prediction for the i sample without using the ith sample.
Leave one out cross-validation

- For every $i = 1, \ldots, n$:
 - train the model on every point except i,
 - compute the test error on the held out point.
- Average the test errors.

$$
CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq \hat{y}_i^{(-i)})
$$

... for a classification problem.
Leave one out cross-validation

Computing $\text{CV}_{(n)}$ can be computationally expensive, since it involves fitting the model n times.

For linear regression, there is a shortcut:

$$\text{CV}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

where h_{ii} is the leverage statistic.
k-fold cross-validation

- Split the data into k subsets or folds.
- For every $i = 1, \ldots, k$:
 - train the model on every fold except the ith fold,
 - compute the test error on the ith fold.
- Average the test errors.
LOOCV vs. k-fold cross-validation

k-fold CV depends on the chosen split.

In k-fold CV, we train the model on less data than what is available. This introduces bias into the estimates of test error.

In LOOCV, the training samples highly resemble each other. This increases the variance of the test error estimate.
Choosing an optimal model

Even if the CV error estimates differ significantly from the true test error, the model with the minimum cross validation error often has relatively small test error.
Choosing an optimal model

In a classification problem, things look similar.

--- Bayes boundary

—— Logistic regression with polynomial predictors of increasing degree.
Choosing an optimal model

In a classification problem, things look similar.

- Training error,
- 10-fold CV,
- Test error.

Note: Training error rate sometimes increases as logistic regression does not directly minimize 0-1 error rate but maximizes likelihood.
The one standard error rule

Forward stepwise selection

- Curves minimized at $p = 10$.
- Models with $9 \leq p \leq 15$ have very similar CV error.
- The vertical bars represent 1 standard error in the test error from the 10 folds.
- **Rule of thumb**: Choose the simplest model whose CV error is no more than one standard error above the model with the lowest CV error.

Figure 7.9. Prediction error (orange) and tenfold cross-validation curve (blue) estimated from a single training set, from the scenario in the bottom right panel of Figure 7.3.

Blue: 10-fold cross validation

Yellow: True test error
The wrong way to do cross validation

Reading: Section 7.10.2 of The Elements of Statistical Learning.

We want to classify 200 individuals according to whether they have cancer or not. We use logistic regression onto 1000 measurements of gene expression.

Proposed strategy:

- Using all the data, select the 20 most significant genes using z-tests.
- Estimate the test error of logistic regression with these 20 predictors via 10-fold cross validation.
The wrong way to do cross validation

To see how that works, let’s use the following simulated data:

- Each gene expression is standard normal and independent of all others.
- The response (cancer or not) is sampled from a coin flip — no correlation to any of the “genes”.

What should the misclassification rate be for any classification method using these predictors?

Roughly 50%.
The wrong way to do cross validation

We run this simulation, and obtain a CV error rate of 3%!

Why is this?

▶ Since we only have 200 individuals in total, among 1000 variables, at least some will be correlated with the response.

▶ We do variable selection using all the data, so the variables we select have some correlation with the response in every subset or fold in the cross validation.
The **right** way to do cross validation

- Divide the data into 10 folds.
- For $i = 1, \ldots, 10$:
 - Using every fold except i, perform the variable selection and fit the model with the selected variables.
 - Compute the error on fold i.
- Average the 10 test errors obtained.

In our simulation, this produces an error estimate of close to 50%.

Moral of the story: Every aspect of the learning method that involves using the data — variable selection, for example — must be cross-validated.