Lecture 11: Cross validation

Reading: Chapter 5

STATS 202: Data mining and analysis

Jonathan Taylor, 10/17
Slide credits: Sergio Bacallado
Comparing classification methods through simulation

1. Simulate data from several different known distributions with 2 predictors and a binary response variable.
1. Simulate data from several different known distributions with 2 predictors and a binary response variable.

2. Compare the test error (0-1 loss) for the following methods:
 - KNN-1
 - KNN-CV (“optimal” KNN)
 - Logistic regression
 - Linear discriminant analysis (LDA)
 - Quadratic discriminant analysis (QDA)
Scenario 1

- X_1, X_2 standard normal.
- No correlation in either class.
Scenario 2

- X_1, X_2 standard normal.
- Correlation is -0.5 in both classes.
Scenario 3

- X_1, X_2 Student t random variables.
- No correlation in either class.
Scenario 4

- X_1, X_2 standard normal.
- First class has correlation 0.5, second class has correlation -0.5.
Scenario 5

- X_1, X_2 uncorrelated, standard normal.

- Response Y was sampled from:

$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1(X_1^2) + \beta_2(X_2^2) + \beta_3(X_1X_2)}}{1 + e^{\beta_0 + \beta_1(X_1^2) + \beta_2(X_2^2) + \beta_3(X_1X_2)}}.$$
Scenario 5

- \(X_1, X_2 \) uncorrelated, standard normal.
- Response \(Y \) was sampled from:

\[
P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1^2 + \beta_2 X_2^2 + \beta_3 X_1 X_2}}{1 + e^{\beta_0 + \beta_1 X_1^2 + \beta_2 X_2^2 + \beta_3 X_1 X_2}}.
\]

- The true decision boundary is quadratic.
Scenario 6

X_1, X_2 uncorrelated, standard normal.

Response Y was sampled from:

$$P(Y = 1|X) = \frac{e^{f_{\text{nonlinear}}(X_1,X_2)}}{1 + e^{f_{\text{nonlinear}}(X_1,X_2)}}.$$
Scenario 6

- X_1, X_2 uncorrelated, standard normal.

- Response Y was sampled from:

$$P(Y = 1|X) = \frac{e^{f_{\text{nonlinear}}(X_1, X_2)}}{1 + e^{f_{\text{nonlinear}}(X_1, X_2)}}.$$

- The true decision boundary is very rough.
Thinking about the loss function is important

Most of the regression methods we’ve studied aim to minimize the RSS, while classification methods aim to minimize the 0-1 loss.
Thinking about the loss function is important

Most of the **regression** methods we’ve studied aim to minimize the RSS, while **classification** methods aim to minimize the 0-1 loss.

In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not the 0-1 loss.
Thinking about the loss function is important.

Most of the **regression** methods we’ve studied aim to minimize the RSS, while **classification** methods aim to minimize the 0-1 loss.

In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not the 0-1 loss.

Even if we use a method which minimizes a certain kind of training error, we can *tune* it to optimize our true loss function.
Most of the **regression** methods we’ve studied aim to minimize the RSS, while **classification** methods aim to minimize the 0-1 loss.

In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not the 0-1 loss.

Even if we use a method which minimizes a certain kind of training error, we can *tune* it to optimize our true loss function.

- e.g. Find the threshold that brings the False negative rate below an acceptable level.
Thinking about the loss function is important

Most of the regression methods we’ve studied aim to minimize the RSS, while classification methods aim to minimize the 0-1 loss.

In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not the 0-1 loss.

Even if we use a method which minimizes a certain kind of training error, we can tune it to optimize our true loss function.

- e.g. Find the threshold that brings the False negative rate below an acceptable level.

In the Kaggle competition, what is our loss function?
Validation

Problem: Choose a supervised method that minimizes the test error.

In addition, tune the parameters of each method:
- k in k-nearest neighbors.
- The number of variables to include in forward or backward selection.
- The order of a polynomial in polynomial regression.

Use of a validation set is one way to approximate the test error:
- Divide the data into two parts.
- Train each model with one part.
- Compute the error on the other.
Validation

Problem: Choose a supervised method that minimizes the test error. In addition, *tune* the parameters of each method:

- k in k-nearest neighbors.
Validation

Problem: Choose a supervised method that minimizes the test error. In addition, *tune* the parameters of each method:

- k in k-nearest neighbors.
- The number of variables to include in forward or backward selection.
Validation

Problem: Choose a supervised method that minimizes the test error. In addition, *tune* the parameters of each method:

- k in k-nearest neighbors.
- The number of variables to include in forward or backward selection.
- The order of a polynomial in polynomial regression.
Validation

Problem: Choose a supervised method that minimizes the test error. In addition, *tune* the parameters of each method:

- k in k-nearest neighbors.
- The number of variables to include in forward or backward selection.
- The order of a polynomial in polynomial regression.

Use of a **validation set** is one way to approximate the test error:

- Divide the data into two parts.
- Train each model with one part.
- Compute the error on the other.
Validation set approach

Goal: Estimate the test error for a supervised learning method.

Strategy:
Validation set approach

Goal: Estimate the test error for a supervised learning method.

Strategy:

- Split the data in two parts.
Validation set approach

Goal: Estimate the test error for a supervised learning method.

Strategy:

- Split the data in two parts.
- Train the method in the first part.
Validation set approach

Goal: Estimate the test error for a supervised learning method.

Strategy:

- Split the data in two parts.
- Train the method in the first part.
- Compute the error on the second part.
Validation set approach

Polynomial regression to estimate mpg from horsepower in the Auto data.
Validation set approach

Polynomial regression to estimate mpg from horsepower in the Auto data.

Problem: Every split yields a different estimate of the error.
Leave one out cross-validation

- For every $i = 1, \ldots, n$:
 - train the model on every point except i,
 - compute the test error on the held out point.
Leave one out cross-validation

- For every \(i = 1, \ldots, n \):
 - train the model on every point except \(i \),
 - compute the test error on the held out point.
- Average the test errors.
Leave one out cross-validation

- For every \(i = 1, \ldots, n \):
 - train the model on every point except \(i \),
 - compute the test error on the held out point.
- Average the test errors.

\[
CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2
\]

Prediction for the \(i \) sample without using the \(i \)th sample.
Leave one out cross-validation

- For every $i = 1, \ldots, n$:
 - train the model on every point except i,
 - compute the test error on the held out point.
- Average the test errors.

\[
CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq \hat{y}_i^{(-i)})
\]

... for a classification problem.
Computing $CV_{(n)}$ can be computationally expensive, since it involves fitting the model n times.
Leave one out cross-validation

Computing $CV_{(n)}$ can be computationally expensive, since it involves fitting the model n times.

For linear regression, there is a shortcut:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

where h_{ii} is the leverage statistic.
\(k \)-fold cross-validation

- Split the data into \(k \) subsets or folds.
k-fold cross-validation

- Split the data into \(k \) subsets or *folds*.
- For every \(i = 1, \ldots, k \):
 - train the model on every fold except the \(i \)th fold,
 - compute the test error on the \(i \)th fold.
\(k\)-fold cross-validation

- Split the data into \(k\) subsets or folds.
- For every \(i = 1, \ldots, k\):
 - train the model on every fold except the \(i\)th fold,
 - compute the test error on the \(i\)th fold.
- Average the test errors.
LOOCV vs. \(k \)-fold cross-validation

\[\text{Mean Squared Error} \]

- **LOOCV**
- **10-fold CV**

During \(k \)-fold CV, we train the model on less data than what is available. This introduces bias into the estimates of test error. In LOOCV, the training samples highly resemble each other, increasing the variance of the test error estimate. \(n \)-fold CV is equivalent to LOOCV.
LOOCV vs. k-fold cross-validation

- k-fold CV depends on the chosen split (somewhat).
LOOCV vs. k-fold cross-validation

\uparrow k-fold CV depends on the chosen split (somewhat).

\uparrow In k-fold CV, we train the model on less data than what is available. This introduces bias into the estimates of test error.
LOOCV vs. k-fold cross-validation

- k-fold CV depends on the chosen split (somewhat).
- In k-fold CV, we train the model on less data than what is available. This introduces bias into the estimates of test error.
- In LOOCV, the training samples highly resemble each other. This increases the variance of the test error estimate.
LOOCV vs. k-fold cross-validation

- k-fold CV depends on the chosen split (somewhat).
- In k-fold CV, we train the model on less data than what is available. This introduces bias into the estimates of test error.
- In LOOCV, the training samples highly resemble each other. This increases the variance of the test error estimate.
- n-fold CV is equivalent LOOCV.
Choosing an optimal model

Even if the error estimates are off, choosing the model with the minimum cross validation error often leads to a method with near minimum test error.
Choosing an optimal model

In a classification problem, things look similar.

- - - Bayes boundary

—— Logistic regression with polynomial predictors of increasing degree.
Choosing an optimal model

In a classification problem, things look similar.
The one standard error rule

Forward stepwise selection

Blue: 10-fold cross validation
Yellow: True test error
The one standard error rule

A number of models with $10 \leq p \leq 15$ have almost the same CV error.

- Forward stepwise selection

Blue: 10-fold cross validation
Yellow: True test error
The one standard error rule

Forward stepwise selection

- A number of models with $10 \leq p \leq 15$ have almost the same CV error.
- The vertical bars represent 1 standard error in the test error from the 10 folds.

Blue: 10-fold cross validation
Yellow: True test error
The one standard error rule

Forward stepwise selection

- A number of models with $10 \leq p \leq 15$ have almost the same CV error.
- The vertical bars represent 1 standard error in the test error from the 10 folds.
- **Rule of thumb:** Choose the simplest model whose CV error is no more than one standard error above the model with the lowest CV error.

Blue: 10-fold cross validation
Yellow: True test error
The wrong way to do cross validation

Reading: Section 7.10.2 of The Elements of Statistical Learning.

We want to classify 200 individuals according to whether they have cancer or not.
The wrong way to do cross validation

Reading: Section 7.10.2 of The Elements of Statistical Learning.

We want to classify 200 individuals according to whether they have cancer or not. We use logistic regression onto 1000 measurements of gene expression.

Proposed strategy:
The wrong way to do cross validation

Reading: Section 7.10.2 of *The Elements of Statistical Learning.*

We want to classify 200 individuals according to whether they have cancer or not. We use logistic regression onto 1000 measurements of gene expression.

Proposed strategy:

- Using all the data, select the 20 most significant genes using z-tests.
The wrong way to do cross validation

Reading: Section 7.10.2 of The Elements of Statistical Learning.

We want to classify 200 individuals according to whether they have cancer or not. We use logistic regression onto 1000 measurements of gene expression.

Proposed strategy:

- Using all the data, select the 20 most significant genes using z-tests.
- Estimate the test error of logistic regression with these 20 predictors via 10-fold cross validation.
The wrong way to do cross validation

To see how that works, let’s use the following simulated data:

- Each gene expression is standard normal and independent of all others.
- The response (cancer or not) is sampled from a coin flip — no correlation to any of the “genes”.

What should the misclassification rate be for any classification method using these predictors?

Roughly 50%.
The wrong way to do cross validation

To see how that works, let’s use the following simulated data:

► Each gene expression is standard normal and independent of all others.

Roughly 50%.
To see how that works, let's use the following simulated data:

- Each gene expression is standard normal and independent of all others.
- The response (cancer or not) is sampled from a coin flip — no correlation to any of the "genes".

What should the misclassification rate be for any classification method using these predictors?

Roughly 50%.
The wrong way to do cross validation

To see how that works, let’s use the following simulated data:

- Each gene expression is standard normal and independent of all others.
- The response (cancer or not) is sampled from a coin flip — no correlation to any of the “genes”.

What should the misclassification rate be for any classification method using these predictors?
The wrong way to do cross validation

To see how that works, let’s use the following simulated data:

- Each gene expression is standard normal and independent of all others.
- The response (cancer or not) is sampled from a coin flip — no correlation to any of the “genes”.

What should the misclassification rate be for any classification method using these predictors?

Roughly 50%.
The wrong way to do cross validation

We run this simulation, and obtain a CV error rate of 3%!

Why is this?
The wrong way to do cross validation

We run this simulation, and obtain a CV error rate of 3%!

Why is this?

- Since we only have 200 individuals in total, among 1000 variables, at least some will be correlated with the response.
The wrong way to do cross validation

We run this simulation, and obtain a CV error rate of 3%!

Why is this?

- Since we only have 200 individuals in total, among 1000 variables, at least some will be correlated with the response.

- We do variable selection using *all the data*, so the variables we select have some correlation with the response in every subset or fold in the cross validation.
The **right** way to do cross validation

- Divide the data into 10 folds.
The right way to do cross validation

- Divide the data into 10 folds.
- For \(i = 1, \ldots, 10 \):
 - Using every fold except \(i \), perform the variable selection and fit the model with the selected variables.
 - Compute the error on fold \(i \).
The **right** way to do cross validation

- Divide the data into 10 folds.
- For $i = 1, \ldots, 10$:
 - Using every fold except i, perform the variable selection and fit the model with the selected variables.
 - Compute the error on fold i.
- Average the 10 test errors obtained.

In our simulation, this produces an error estimate of close to 50%. Moral of the story: Every aspect of the learning method that involves using the data — variable selection, for example — must be cross-validated.
The **right** way to do cross validation

- Divide the data into 10 folds.
- For \(i = 1, \ldots, 10 \):
 - Using every fold except \(i \), perform the variable selection and fit the model with the selected variables.
 - Compute the error on fold \(i \).
- Average the 10 test errors obtained.

In our simulation, this produces an error estimate of close to 50%.
The **right** way to do cross validation

- Divide the data into 10 folds.
- For $i = 1, \ldots, 10$:
 - Using every fold except i, perform the variable selection and fit the model with the selected variables.
 - Compute the error on fold i.
- Average the 10 test errors obtained.

In our simulation, this produces an error estimate of close to 50%.

Moral of the story: Every aspect of the learning method that involves using the data — variable selection, for example — must be cross-validated.