Lecture 19: Decision trees

Reading: Section 8.1

STATS 202: Data mining and analysis

Jonathan Taylor
November 7, 2017
Slide credits: Sergio Bacallado
Decision trees, 10,000 foot view

1. Find a partition of the space of predictors.
2. Predict a constant in each set of the partition.
1. Find a partition of the space of predictors.
2. Predict a constant in each set of the partition.
3. The partition is defined by splitting the range of one predictor at a time.
Decision trees, 10,000 foot view

1. Find a partition of the space of predictors.
2. Predict a constant in each set of the partition.
3. The partition is defined by splitting the range of one predictor at a time.
 → Not all partitions are possible.
Example: Predicting a baseball player’s salary

The prediction for a point in R_i is the average of the training points in R_i.
How is a decision tree built?

Start with a single region R_1, and iterate:

1. Select a region R_k, a predictor X_j, and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$
|T| \sum_{m=1}^{T} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2
$$

2. Redefine the regions with this additional split.
How is a decision tree built?

- Start with a single region R_1, and iterate:

1. Select a region R_k, a predictor X_j, and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$|T| \sum_{m=1}^{T} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

2. Redefine the regions with this additional split.

- Terminate when there are 5 observations or fewer in each region.
How is a decision tree built?

- Start with a single region R_1, and iterate:

 1. Select a region R_k, a predictor X_j, and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

\[
|T| \sum_{m=1}^{\ |T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2
\]

 2. Redefine the regions with this additional split.

- Terminate when there are 5 observations or fewer in each region.

- This grows the tree from the root towards the leaves.
How is a decision tree built?
How do we control overfitting?

- **Idea 1:** Find the optimal subtree by cross validation.
How do we control overfitting?

- **Idea 1:** Find the optimal subtree by cross validation.
 → There are too many possibilities – harder than best subsets!
How do we control overfitting?

▶ **Idea 1:** Find the optimal subtree by cross validation.
 → There are too many possibilities – harder than best subsets!

▶ **Idea 2:** Stop growing the tree when the RSS doesn’t drop by more than a threshold with any new cut.
How do we control overfitting?

- **Idea 1:** Find the optimal subtree by cross validation.
 → There are too many possibilities – harder than best subsets!

- **Idea 2:** Stop growing the tree when the RSS doesn’t drop by more than a threshold with any new cut.
 → In our greedy algorithm, it is possible to find good cuts after bad ones.
How do we control overfitting?

Solution: Prune a large tree from the leaves to the root.

- **Weakest link pruning:**

 starting with T_0, substitute a subtree with a leaf to obtain T_1, by minimizing:

 $$\text{RSS}(T_1) - \text{RSS}(T_0) \mid T_0 \mid - \mid T_1 \mid.$$

 Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \ldots, T_m$ where T_m is the null tree.

 Select the optimal tree T_i by cross validation.
How do we control overfitting?

Solution: Prune a large tree from the leaves to the root.

- **Weakest link pruning:**
 - Starting with T_0, substitute a subtree with a leaf to obtain T_1, by minimizing:

 $$ \frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$
How do we control overfitting?

Solution: Prune a large tree from the leaves to the root.

- **Weakest link pruning:**
 - Starting with T_0, substitute a subtree with a leaf to obtain T_1, by minimizing:
 $$RSS(T_1) - RSS(T_0)\over |T_0| - |T_1|.$$
 - Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \ldots, T_m$ where T_m is the null tree.
How do we control overfitting?

Solution: Prune a large tree from the leaves to the root.

▶ Weakest link pruning:

► Starting with T_0, substitute a subtree with a leaf to obtain T_1, by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

► Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \ldots, T_m$ where T_m is the null tree.

► Select the optimal tree T_i by cross validation.
How do we control overfitting?

... or an equivalent procedure

- Cost complexity pruning:

\[
\min_{T} \sum_{m=1}^{M} \sum_{x_i \in R_m} (y_i - \bar{y}_R_m)^2 + \alpha |T|
\]

- When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.
- The solution for each α is among $T_1, T_2, ..., T_M$ from weakest link pruning.
- Choose the optimal α (the optimal T_i) by cross validation.
How do we control overfitting?

... or an equivalent procedure

- **Cost complexity pruning:**
 - Solve the problem:

\[
\text{minimize}_{T} \sum_{|T|} \sum_{m=1}^{X} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha|T|.
\]
How do we control overfitting?

... or an equivalent procedure

- **Cost complexity pruning:**
 - Solve the problem:

 $$\text{minimize}_T \sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- When \(\alpha = \infty \), we select the null tree.
- When \(\alpha = 0 \), we select the full tree.
- The solution for each \(\alpha \) is among \(T_1, T_2, \ldots, T_m \) from weakest link pruning.
- Choose the optimal \(\alpha \) (the optimal \(T_i \)) by cross validation.
How do we control overfitting?

... or an equivalent procedure

▶ **Cost complexity pruning:**

▶ Solve the problem:

$$\min_T \sum_{m=1}^{\left| T \right|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

▶ When $\alpha = \infty$, we select the null tree.

▶ When $\alpha = 0$, we select the full tree.

▶ The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.

▶ Choose the optimal α (the optimal T_i) by cross validation.
How do we control overfitting?

... or an equivalent procedure

- **Cost complexity pruning:**
 - Solve the problem:

 $$\minimize_T \sum_{m=1}^{T} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

 - When $\alpha = \infty$, we select the null tree.
 - When $\alpha = 0$, we select the full tree.
How do we control overfitting?

... or an equivalent procedure

- **Cost complexity pruning:**
 - Solve the problem:
 \[
 \text{minimize}_T \sum_{m=1}^{T} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha|T|.
 \]
 - When \(\alpha = \infty \), we select the null tree.
 - When \(\alpha = 0 \), we select the full tree.
 - The solution for each \(\alpha \) is among \(T_1, T_2, \ldots, T_m \) from weakest link pruning.
How do we control overfitting?

... or an equivalent procedure

- **Cost complexity pruning:**
 - Solve the problem:

 $$\text{minimize}_{T} \left|T\right| \sum_{m=1}^{\left|T\right|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$
 - When $\alpha = \infty$, we select the null tree.
 - When $\alpha = 0$, we select the full tree.
 - The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.
 - Choose the optimal α (the optimal T_i) by cross validation.
1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α.

Cross validation WRONG WAY!
Cross validation WRONG WAY!

1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α.
2. Split the training points into 10 folds.
Cross validation WRONG WAY!

1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α.

2. Split the training points into 10 folds.

3. For $k = 1, \ldots, 10$,
 - For each tree T_i, use every fold except the k:th to estimate the averages in each region.
 - For each tree T_i, calculate the RSS in the test fold.
Cross validation WRONG WAY!

1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α.

2. Split the training points into 10 folds.

3. For $k = 1, \ldots, 10$,
 - For each tree T_i, use every fold except the kth to estimate the averages in each region.
 - For each tree T_i, calculate the RSS in the test fold.

4. For each tree T_i, average the 10 test errors, and select the value of α that minimizes the error.
Cross validation, the right way

1. Split the training points into 10 folds.
Cross validation, the right way

1. Split the training points into 10 folds.
2. For $k = 1, \ldots, 10$, using every fold except the kth:
 - Construct a sequence of trees T_1, \ldots, T_m for a range of values of α, and find the prediction for each region in each one.
 - For each tree T_i, calculate the RSS on the test set.

Note: We are doing all fitting, including the construction of the trees, using only the training data.
Cross validation, the right way

1. Split the training points into 10 folds.

2. For $k = 1, \ldots, 10$, using every fold except the kth:
 - Construct a sequence of trees T_1, \ldots, T_m for a range of values of α, and find the prediction for each region in each one.
 - For each tree T_i, calculate the RSS on the test set.

3. Select the parameter α that minimizes the average test error.
Cross validation, the right way

1. Split the training points into 10 folds.

2. For \(k = 1, \ldots, 10 \), using every fold except the \(k \)th:
 - Construct a sequence of trees \(T_1, \ldots, T_m \) for a range of values of \(\alpha \), and find the prediction for each region in each one.
 - For each tree \(T_i \), calculate the RSS on the test set.

3. Select the parameter \(\alpha \) that minimizes the average test error.

Note: We are doing all fitting, including the construction of the trees, using only the training data.
Example. Predicting baseball salaries
Example. Predicting baseball salaries

```
<table>
<thead>
<tr>
<th>Years &lt; 4.5</th>
<th>Hits &lt; 117.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>6.74</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Tree Size</th>
<th>Mean Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>Cross-Validation</td>
</tr>
<tr>
<td></td>
<td>Test</td>
</tr>
</tbody>
</table>
```

![Graph showing mean squared error against tree size](image)
Classification trees

- They work much like regression trees.
Classification trees

- They work much like regression trees.
- We predict the response by **majority vote**, i.e. pick the most common class in every region.
Classification trees

- They work much like regression trees.
- We predict the response by **majority vote**, i.e. pick the most common class in every region.
- Instead of trying to minimize the RSS:

\[
\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2
\]

we minimize a classification loss function.
Classification losses

- The 0-1 loss or misclassification rate:
 \[
 \sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})
 \]

- The Gini index:
 \[
 \sum_{m=1}^{|T|} q_m \sum_{k=1}^K \hat{p}_{mk}(1 - \hat{p}_{mk}),
 \]
 where $\hat{p}_{m,k}$ is the proportion of class k within R_m, and q_m is the proportion of samples in R_m.

- The cross-entropy:
 \[
 - \sum_{m=1}^{|T|} q_m \sum_{k=1}^K \hat{p}_{mk} \log(\hat{p}_{mk}).
 \]
Classification losses

- The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.
Classification losses

- The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

- **Motivation for the Gini index:**

 If instead of predicting the most likely class, we predict a random sample from the distribution \((\hat{p}_{1,m}, \hat{p}_{2,m}, \ldots, \hat{p}_{K,m})\), the Gini index is the expected misclassification rate.
Classification losses

- The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

- **Motivation for the Gini index:**

 If instead of predicting the most likely class, we predict a random sample from the distribution \((\hat{p}_1,m, \hat{p}_2,m, \ldots, \hat{p}_K,m)\), the Gini index is the expected misclassification rate.

- It is typical to use the Gini index or cross-entropy for growing the tree, while using the misclassification rate when pruning the tree.
Example. Heart dataset.
Some advantages of decision trees

▶ Very easy to interpret!
Some advantages of decision trees

- Very easy to interpret!
- Closer to human decision-making.
Some advantages of decision trees

- Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.
Some advantages of decision trees

- Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.
- They easily handle qualitative predictors and missing data.
Some advantages of decision trees

▶ Very easy to interpret!
▶ Closer to human decision-making.
▶ Easy to visualize graphically.
▶ They easily handle qualitative predictors and missing data.
▶ Downside: they don’t necessarily fit as well!