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Generalized Least Squares

We saw that if the model is
y = Xβ + ε,

whereE[ε|X] = 0 andVar[ε|X] = Σ, then the best estimator is
β̂GLS = (XTΣ−1X)−1XTΣ−1y.



Covariance Functions

• Σ is usually unknown, and there is no hope of estimating it
from just n observations.

• So we parametrizeΣ, i.e.,Σ = Σθ .
• There is often a covariance functionΣθ(s, s′) on the space
where the observations lie, and we obtain (Σθ)ij = Σθ(si, sj).

• Examples include
• Σθ(s, s′) = max(θ1 − θ2d(s, s′), 0)
• Σθ(s, s′) = θ1 exp{θ2d(s, s′)}.



Today

• We estimate θ from the data.
• Wewill learn twoways: (1) the HackTM and (2) model-based.
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“The Chicken or the Egg” Problem

• To calculate β̂GLS , we need an estimate ofΣ.
• To estimateΣ = Var(ε), we need an estimate of the error

ε̂ = y −Xβ̂GLS ,

so we need β̂GLS .
Solution: Use β̂OLS as a “preliminary” estimate and estimateΣ
using

ε̂ = y −Xβ̂OLS .



Estimating the Covariance
• Now that we have ε̂, how dowe estimate the covariance?
• Σij = Σ(d(si, sj)) is assumed to be a function of the distance
between the points. So we need to estimate the covariance
functionΣ(h).

• If data is regularly spaced, then estimateΣ(h) by the
covariance of the observations spaced h apart:

Σ̂(h) =

∑
(i,j)∈Sh ε̂iε̂j

|Sh|
,

where Sh = {(i, j) : d(si, sj) = h}.
• If data is irregularly spaced, then we look in a window around
h.

Σ̂(h) =

∑
(i,j)∈Sh,δ ε̂iε̂j

|Sh,δ|
,

where Sh,δ = {(i, j) : d(si, sj) ∈ [h− δ, h+ δ]}.



California Ozone Example
Ozone levels measured across California



California Ozone Example
Residuals ε̂ after regressing out latitude and longitude



California Ozone Example
Pairs of observations where 0 ≤ d(si, sj) < .2

Σ̂(.1) = 2.7× 10−4



California Ozone Example
Pairs of observations where .2 ≤ d(si, sj) < .4

Σ̂(.3) = 1.5× 10−4



California Ozone Example
Pairs of observations where .4 ≤ d(si, sj) < .6

Σ̂(.5) = 1.2× 10−4



California Ozone Example
Plot of Σ̂(h)
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California Ozone Example
Calculate SE = SD/

√
n to add error bars:
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Estimating θ

• Canwe just connect the dots and call that the covariance
function?

• No! Not guaranteed to be positive definite.
• Parametrizing the covariance asΣθ(h) helps ensure that the
covariance is positive definite.

• Choose θ to minimize the difference between the observed
and theoretical covariance function:

θ̂ = argmin
θ

∑
h

wh(Σ̂(h)− Σθ(h))2.

• Thewh are weights. Wemay want to downweight bins forwhich we have less data, i.e.,wh ∝ Nh.



California Ozone Example
Fitted covariance functions
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California Ozone Example

Now that we’ve estimated the covariance function as
Σ̂(h) = .00025e−2.496h

2

we can go back and fit generalized least squares!
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Model-Based Approach

• TheHack suffers from two drawbacks:
• Weused β̂OLS to get a preliminary estimate of εwhenwe
really should be using β̂GLS .

• The final fitting of the covariance function to the data requires
manual tuning of parameters: bin size, weightswh, etc.

• Another approach is to assume a parametric model and
estimate the parameters by maximum likelihood.



TheModel

Themodel is still
y = Xβ + ε,

withE[ε|X] = 0 andVar[ε|X] = Σθ , except nowwe furtherassume that ε is normal.
We can nowwrite down a likelihood for our data:

1

(2π)n/2(det Σθ)1/2
exp

{
−1

2
(y −Xβ)TΣ−1θ (y −Xβ)

}
,

which we can optimize overβ and θ simultaneously.



Calculating theMLE
1

(2π)n/2(det Σθ)1/2
exp

{
−1

2
(y −Xβ)TΣ−1θ (y −Xβ)

}
.

The log-likelihood is
−1

2
log det Σθ −

1

2
(y −Xβ)TΣ−1θ (y −Xβ).

Let’s first optimize overβ for any fixed θ. That is, what is β̂(θ)?
Why, it’s the GLS estimator! β̂(θ) = (XTΣ−1θ X)−1XTΣ−1θ y.
Let’s plug this into the log-likelihood:

−1

2
log det Σθ −

1

2
(y −Xβ̂(θ))TΣ−1θ (y −Xβ̂(θ)).

Nowwe “just” have to optimize this over θ.



Calculating theMLE

−1

2
log det Σθ −

1

2
(y −Xβ̂(θ))TΣ−1θ (y −Xβ̂(θ))

= ...

= −1

2
log det Σθ −

1

2
yTΣ−1θ (I −X(XTΣ−1θ X)−1XTΣ−1θ )y

To optimize this, you’ll need to:
• compute derivative with respect to θ
• solve a highly non-convex problem.

However, the dimensionality of θ is usually small, so you can do a
brute-force grid search.



Summary

• TheHack is simple and fairly robust. We don’t make any
distributional assumptions.

• Themodel-based approach is more principled. But it may be
difficult or impossible to compute theMLE in practice, and it is
sensitive to the assumption of normality.
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Logistics

• Homework 1 will be released tonight and due next Friday.
• It is a data analysis assignment that involves implementing
some of the methods we’ve discussed.

• It is also a prediction competition. There will be prizes for the
winners.

• I will provide starter code in R andmaybe Python.
• JingshuWang, the TA for this course, will have office hours
Thursdays 2-4pm.
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