Lecture 5 Prediction and Kriging

Dennis Sun Stanford University Stats 253

July 1, 2015

1 Prediction

2 Kriging

1 Prediction

2 Kriging

How do you predict?

- In the usual linear regression model where $Var[\epsilon|X] = \sigma^2 I$, how do we predict y_0 for a new set of covariates?
- Everybody "knows" that the answer is $x_0^T \hat{\beta}^{OLS}$.
- So how do we predict y_0 in the correlated model where $\operatorname{Var}[\epsilon|X] = \Sigma$? Is it just $x_0^T \hat{\boldsymbol{\beta}}^{GLS}$?
- No! This is why it's important to think carefully about optimality of estimators.

Best Linear Unbiased Prediction

Remember that the model for the data is

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \mathrm{E}[\boldsymbol{\epsilon}|X] = \mathbf{0}.$$

The same model holds at the point we are trying to predict:

$$y_0 = \mathbf{x}_0^T \boldsymbol{\beta} + \epsilon_0.$$

Let's try to find the **best linear unbiased predictor**. That is, we would like a predictor of the form $\hat{y}_0 = \mathbf{w}^T \mathbf{y}$ satisfying $\mathrm{E}[\hat{y}_0] = \mathrm{E}[y_0]$. This means that $\mathbf{w}^T X \boldsymbol{\beta} = \mathbf{x}_0^T \boldsymbol{\beta}$ for all $\boldsymbol{\beta}$.

Now we can write down an optimization problem:

minimize
$$\mathrm{E}(y_0 - \mathbf{w}^T \mathbf{y})^2$$
 subject to $\mathbf{w}^T X = \mathbf{x}_0^T$

Solving the Optimization Problem

minimize
$$\mathrm{E}(y_0 - \mathbf{w}^T \mathbf{y})^2$$
 subject to $\mathbf{w}^T X = \mathbf{x}_0^T$.

Let's first rewrite the objective function by adding and subtracting $E[y_0] = \mathbf{x}_0^T \boldsymbol{\beta}$ and $E[\mathbf{w}^T \mathbf{y}] = \mathbf{w}^T X \boldsymbol{\beta}$:

$$E(y_0 - \mathbf{w}^T \mathbf{y})^2 = E(\underbrace{y_0 - \mathbf{x}_0^T \boldsymbol{\beta}}_{\epsilon_0} + \underbrace{\mathbf{x}_0^T \boldsymbol{\beta} - \mathbf{w}^T X \boldsymbol{\beta}}_{0} - \mathbf{w}^T (\underbrace{\mathbf{y} - X \boldsymbol{\beta}}_{\epsilon}))^2$$
$$= E(\epsilon_0 - \mathbf{w}^T \boldsymbol{\epsilon})^2$$

So our optimization problem becomes

minimize
$$E(\epsilon_0 - \mathbf{w}^T \boldsymbol{\epsilon})^2$$
 subject to $\mathbf{w}^T X = \mathbf{x}_0^T$.

Solve by Lagrange multipliers! The Lagrangian is:

$$E(\epsilon_0 - \mathbf{w}^T \boldsymbol{\epsilon})^2 + (\mathbf{x}_0^T - \mathbf{w}^T X) \boldsymbol{\lambda}.$$

Solving the Optimization Problem

$$E(\epsilon_0 - \mathbf{w}^T \boldsymbol{\epsilon})^2 + (\mathbf{x}_0^T - \mathbf{w}^T X) \boldsymbol{\lambda}.$$

If errors are uncorrelated, then this is

$$E[\epsilon_0^2] + E(\mathbf{w}^T \boldsymbol{\epsilon})^2 + (\mathbf{x}_0^T - \mathbf{w}^T X) \boldsymbol{\lambda} = \sigma^2 + \sigma^2 \mathbf{w}^T \mathbf{w} + (\mathbf{x}_0^T - \mathbf{w}^T X) \boldsymbol{\lambda}.$$

Setting the derivatives with respect to \mathbf{w} and $\boldsymbol{\lambda}$ equal to zero, we obtain the first-order conditions:

$$2\sigma^2 \mathbf{w} = X\lambda \qquad X^T \mathbf{w} = \mathbf{x}_0.$$

Multiply the first equation by X^T . Then, by the second equation, we can replace $X^T\mathbf{w}$ by \mathbf{x}_0 to obtain $2\sigma^2\mathbf{x}_0=X^TX\boldsymbol{\lambda}$, so the Lagrange multiplier is

$$\lambda = 2\sigma^2 (X^T X)^{-1} \mathbf{x}_0.$$

Substituting this into the first equation, we obtain

$$\mathbf{w} = X(X^T X)^{-1} \mathbf{x}_0.$$

Does the solution make sense?

$$\mathbf{w} = X(X^T X)^{-1} \mathbf{x}_0.$$

This is correct because it says that when the errors are uncorrelated, the optimal predictor of y_0 is

$$\hat{y}_0 = \mathbf{w}^T \mathbf{y} = \mathbf{x}_0^T (X^T X)^{-1} X^T \mathbf{y} = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}^{OLS}.$$

Let's try to do the same calculation when the errors are correlated. Call the covariances:

$$\Sigma_{00} = \operatorname{Var}[\epsilon_0]$$
 $\Sigma_{01} = \operatorname{Cov}[\epsilon_0, \epsilon]$ $\Sigma_{11} = \operatorname{Var}[\epsilon]$
= $\operatorname{E}[\epsilon_0^2]$ = $\operatorname{E}[\epsilon_0 \epsilon]$ = $\operatorname{E}[\epsilon \epsilon^T]$

The Correlated Case

The objective we are trying to solve is

$$E(\epsilon_0 - \mathbf{w}^T \boldsymbol{\epsilon})^2 + (\mathbf{x}_0^T - \mathbf{w}^T X) \boldsymbol{\lambda}.$$

Expanding the expectation, we obtain:

$$\Sigma_{00} - 2\Sigma_{01}\mathbf{w} + \mathbf{w}^T\Sigma_{11}\mathbf{w} + (\mathbf{x}_0^T - \mathbf{w}^TX)\boldsymbol{\lambda}.$$

Setting the derivatives with respect to \mathbf{w} and $\boldsymbol{\lambda}$ equal to zero, we obtain the first-order conditions:

$$2\Sigma_{11}\mathbf{w} - X\boldsymbol{\lambda} = 2\Sigma_{10} \qquad X^T\mathbf{w} = \mathbf{x}_0$$

To solve for \mathbf{w} , we multiply the first equation by $X^T \Sigma_{11}^{-1}$ to obtain

$$2\underbrace{X^T\mathbf{w}}_{\mathbf{X}_0} - X^T \Sigma_{11}^{-1} X \boldsymbol{\lambda} = 2X^T \Sigma_{11}^{-1} \Sigma_{10}$$

Now we can substitute the second equation $X^T \mathbf{w} = \mathbf{x}_0$ into this equation and solve for λ :

$$\lambda = 2(X^T \Sigma_{11}^{-1} X)^{-1} (\mathbf{x}_0 - X^T \Sigma_{11}^{-1} \Sigma_{10}).$$

The Correlated Case

$$\lambda = 2(X^T \Sigma_{11}^{-1} X)^{-1} (\mathbf{x}_0 - X^T \Sigma_{11}^{-1} \Sigma_{10}).$$

Now substitute this value of λ into the original first-order condition $2\Sigma_{11}\mathbf{w} - X\lambda = 2\Sigma_{10}$ to solve for \mathbf{w} :

$$\mathbf{w} = \Sigma_{11}^{-1} (\Sigma_{10} + X(X^T \Sigma_{11}^{-1} X)^{-1} (\mathbf{x}_0 - X^T \Sigma_{11}^{-1} \Sigma_{10}))$$

So what is $\hat{y}_0 = \mathbf{w}^T \mathbf{y}$, ultimately?

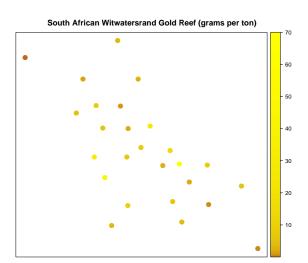
$$\mathbf{w}^{T}\mathbf{y} = \Sigma_{01}\Sigma_{11}^{-1}\mathbf{y} + (\mathbf{x}_{0} - X^{T}\Sigma_{11}^{-1}\Sigma_{10})^{T} \underbrace{(X^{T}\Sigma_{11}^{-1}X)^{-1}X^{T}\Sigma_{11}^{-1}\mathbf{y}}_{\hat{\boldsymbol{\beta}}^{GLS}}$$
$$= \mathbf{x}_{0}^{T}\hat{\boldsymbol{\beta}}^{GLS} + \Sigma_{01}\Sigma_{11}^{-1}(\mathbf{y} - X\hat{\boldsymbol{\beta}}^{GLS}).$$

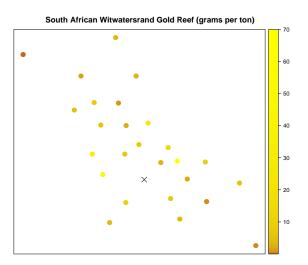
1 Prediction

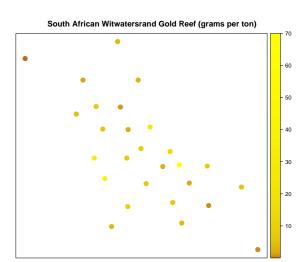
2 Kriging

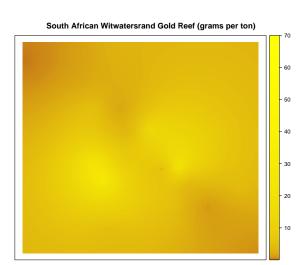
A Brief History of Kriging

- Kriging is named for Danie Krige (1919-2013), a South African mining engineer.
- He was trying to predict gold grades at the Witwatersrand reef complex.
- The prediction method that he used was the one just discussed.
- For these historical reasons, spatial prediction is often called **geostatistics**.









Types of Kriging

Assume a covariance function $\Sigma(\mathbf{s}, \mathbf{s}')$ on the space.

- Simple kriging: $y_i = \epsilon_i$.
- Ordinary kriging: $y_i = \mu + \epsilon_i$.
- Universal kriging: $y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$.

Instead of the covariance, they use the **variogram**.

$$2\gamma(\mathbf{s}_i, \mathbf{s}_j) = \operatorname{Var}[y_i - y_j]$$

In the case of ordinary kriging, estimating the variogram doesn't require an estimate of the mean, unlike estimating the covariance.

