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@ Prediction



How do you predict?

In the usual linear regression model where Var[e| X] = 021,
how do we predict yo for a new set of covariates?

Everybody “knows” that the answer is 2 BOLS

So how do we predict yo in the correlated model where
Var[e| X] = X7 Is it just 2 BEF5?

No! Thisis why it's important to think carefully about
optimality of estimators.



Best Linear Unbiased Prediction

Remember that the model for the datais
y = XB+e¢€, Ele|X]=0.
The same model holds at the point we are trying to predict:

Yo = x4 B + €o.

Let’s try to find the best linear unbiased predictor. That is, we
would like a predictor of the form gy = w’'y satisfying
E[90] = E[yo]. This means that w X3 = x{' 3 for all 8.

Now we can write down an optimization problem:

minimize E(yg — w’y)? subjectto w’ X = x7
w



Solving the Optimization Problem

minimize E(yg — w’y)? subjectto w’ X = x?.
w

Let’s first rewrite the objective function by adding and subtracting
E[yo] = x{ Band E[wly] = wT X 3:
E(yo —w'y)’ =E(yo —x0 8 +x,8 - w' X8 —w'(y — X3))*
N—— —_—— ———
€0 0 €

= E(eg — w'le)?
So our optimization problem becomes
minimize B(eo — w Te)? subjectto wl' X = x7.

Solve by Lagrange multipliers! The Lagrangian is:

E(eo — wle)® + (xi —wlX)A



Solving the Optimization Problem

E(eo — wle)® + (xi —wlX)A
If errors are uncorrelated, then this is
Eleg] +E(w"e)® +(xg —w' X)A = o* + 0wl w+ (xf —w  X)A.

Setting the derivatives with respect to w and X equal to zero, we
obtain the first-order conditions:

20°w = X XTW:X().

Multiply the first equation by X7 Then, by the second equation,
we can replace X Tw by xg to obtain 202x¢ = X7 X\, so the
Lagrange multiplier is

A =20%(XTX) tx.

Substituting this into the first equation, we obtain

w=X(XTX) x|




Does the solution make sense?

w=X(XTX) .

This is correct because it says that when the errors are
uncorrelated, the optimal predictor of yq is

o = w'y = x§ (X7 X) 7' XTy = x] 405
Let’s try to do the same calculation when the errors are correlated.
Call the covariances:

Yoo = Var|eg] Y01 = Covlep, €] Y11 = Varle]
= B[ed] = Elep€] = Elee’ ]



The Correlated Case

The objective we are trying to solve is
E(eo — wle)® + (xi —wl X))\
Expanding the expectation, we obtain:
Yoo — 2501w + WX W+ (XE‘)F —wliX)A

Setting the derivatives with respect to w and X equal to zero, we
obtain the first-order conditions:

2211W —X\= 2210 XTW = X0
To solve for w, we multiply the first equation by XTZl’ll to obtain
T Ty—1 Ty—1
2X'w—X" Y7 XA=2X"X72
X0

Now we can substitute the second equation XTw = xg into this
equation and solve for A:

A=2XTY ' X) (%o — X2 210).



The Correlated Case

A=2XT2 ' X) (%o — XTI 200).

Now substitute this value of X into the original first-order
condition 2X11;w — X\ = 2X4 to solve for w:

w =27 10+ XXTE 1 X) (%0 — XT21! 500))
Sowhatis gy = w'y, ultimately?

wly = Y18y + (x0 — X2 S0)T (XTI X)X TSy

QGLS

— XgBGLS + 20121—11 (y o XBGLS).



@ Kriging



A Brief History of Kriging

Kriging is named for Danie Krige (1919-2013), a South
African mining engineer.

He was trying to predict gold grades at the Witwatersrand
reef complex.

The prediction method that he used was the one just
discussed.

For these historical reasons, spatial prediction is often called
geostatistics.



Witwatersrand Gold Data

South African Witwatersrand Gold Reef (grams per ton)
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Witwatersrand Gold Data

South African Witwatersrand Gold Reef (grams per ton)




Types of Kriging

Assume a covariance function X(s, s’) on the space.
e Simple kriging: y; = ¢;.
e Ordinary kriging: y; = 1 + ¢;.
e Universal kriging: y; = x/ 3 + «;.



The Variogram

Instead of the covariance, they use the variogram.

2v(s;, sj) = Varly; — y;]

In the case of ordinary kriging, estimating the variogram doesn't
require an estimate of the mean, unlike estimating the covariance.



The Variogram
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