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Last Class

Where are we?

@ Last Class
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Last Class

Motivation for AR processes

e The linear regression model
y=XB+e€, e~ N(0,0°I)

assumes observations ¥; are independent.

e We can introduce dependence by adding a lag term:

Yt = mf,@ + PYp—1 + €
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Last Class

Least Squares Estimation

e We can still estimate 8 and ¢ by least squares:

Y2 n
: = _X2:n_ :
Yn Yn—1

|
B—i—e
¢

e Advantages: consistent estimate of 3 and ¢

e Disadvantages: discard 1 observation, standard errors are incorrect
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Simulation Study

e Simulated many instances of a length 1000 random walk

Yt =PY—1+ €, ¢ =1

e Estimate ¢ by autoregression.
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Simulation Study
e Simulated many instances of a length 1000 random walk

Yt =PY—1+ €, =1

e Estimate ¢ by autoregression.

Call:
Im(formula =y ~ x - 1)
Residuals:
Min 1Q Median 3Q Max

-3.2497 -0.6678 0.0396 0.6699 4.3311

Coefficients:
Estimate Std. Error t value Pr(>Itl)
x:0.998757 > 9.001835  544.3 <2e-16 ***
* %k

G S'graf. codes: @ ¢
Residual standard error: ©0.9882 on 998 degrees of freedom
Multiple R-squared: ©.9966, Adjusted R-squared: 0.9966
F-statistic: 2.962e+05 on 1 and 998 DF, p-value: < 2.2e-16

0.001 ‘**’ 0.01 ‘** 0.05 ‘.’ 0.1 ‘ ’ 1
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Million dollar question

How do we obtain correct standard errors?
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The (Parametric) Bootstrap

e In the simulation, we knew ¢ and so were able to simulate many
instances of

Yt = OYr—1 + €&

to estimate Var(¢).
e In practice, we do not know ¢—that's why we're estimating it!

e Idea: We have a (pretty good) estimate of ¢. Why not simulate
many instances of

Yt = éyt—1 + €&

to estimate Var(¢)?

e This is the (parametric) bootstrap.
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Maximum Likelihood Estimation

Where are we?

©® Maximum Likelihood Estimation
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Review of the MLE

e Another general approach for estimating parameters is maximum
likelihood estimation.

e The likelihood is the probability distribution, viewed as a function of

¢:
def

L(¢) = p(y1, - yn|®)

e The MLE estimates ¢ by choosing the ¢ maximizes L for the
observed data:

(ﬁmle = argglax log L(¢)
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MLE of an AR process

We need to calculate p(y1, ..., yn|®).

P, - yn) = Py1) - p(y2ly1) - p(y3ly1, y2) - o - P(WUnlyt, s Yn—1).

Recall that for an AR process, we have y; = ¢ys—1 + €.

Py, -y yr—1) = p(yelye—1) for =2, ..., n
is the density of a N(¢y;_1,0?).

1 1
P(yelyi—1) = ovon exp {_ﬁ(yt - ¢yt—1)2}

Putting it all together, we have:

n—1 n
) =)+ (=) e {—% > - ma?}

t=2
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MLE of an AR process

1 n—1 1 n
p(y1,~--,yn)=p(y1)-< ) exp 207 - — dYi-1)
oV 2r

e The log-likelihood is:

logp(y1) — (n — 1) log(oV/2) — % > (i — dye1)?

and we maximize this over ¢.
e How does this compare with regression (least squares)?
e In least squares, we minimize

n

> (e — dyi1).

t=2

o Maximum likelihood and least squares are identical for AR time series!
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Maximum Likelihood Estimation

Summary

e Maximum likelihood is another “recipe” for coming up with a good
estimator.

e The MLE for an AR process turns out to be the same as the least
squares estimator.

O = Pmie
e The parametric bootstrap is a general way to get an estimate of

Var(¢).
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Spatial Autoregression

Where are we?

O Spatial Autoregression
Case Study
Simultaneous vs. Conditional Autoregression
Non-Gaussian Data
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Graphical Representation of AR(1) process

AR(1) process: y; = ¢yi—1 + €

An edge between y; and y; indicates that y; and y; are dependent,
conditional on the rest.
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Case Study
North Carolina SIDS Data

e Sudden infant death syndrome (SIDS): unexplained infant deaths.

e Is it genetic? environmental? random?

e Number of SIDS cases S;,i = 1, ..., 100 collected for 100 North

Carolina counties.

7

)

Freeman-Tukey transformed data:

yi = (1000S;/1;)"/% 4 (1000(S; 4 1) /n;) /2
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Spatial Autoregression Case Study

An Autoregressive Model

Let's try to model this as a spatial process.

AR TTNY

I

‘ %7 / L & \/ =
VK AN
e A Tt

Let N(i) denote the neighbors of county i. Consider the model:

1
[N (@)

> (Wi —m) + e

JEN(i)

Yi— i = ¢

where e.g., u; =z 3. What happens if ¢ = 07
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Spatial Autoregression Case Study

Estimating Parameters

1
yi—uiszm Z (yj —py) t &

JEN(3)

e Should we estimate parameters by least squares? No! It’s
inconsistent. (Whittle 1954)

e Let's try maximum likelihood.

e First, write in vector notation as

Yy—pn=0W(y—pn)+e

(I—oW)(y—p)=¢€
soy =p+(I— W) e~ N(u, (I — W) 'o®[(I — sWT) 7).
e Now we can write down the likelihood and maximize it.
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ST
Data Analysis

R Code:

model <- spautolm(ft.SID74 ~ 1, data=nc,
listw=nb2listw(neighbors, zero.policy=T))

summary (model)
R Output:
Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.8597 0.1445 19.791 < 2.2e-16

Lambda: 0.38891 LR test value: 11.286 p-value: 0.00078095
Numerical Hessian standard error of lambda: 0.10761

Log likelihood: -133.3255

ML residual variance (sigma squared): 0.80589, (sigma: 0.89771)
Number of observations: 100

Number of parameters estimated: 3

AIC: 272.65
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ST
Data Analysis

R Code:

model <- spautolm(ft.SID74 ~ ft.NWBIR74, data=nc,
listw=nb2listw(neighbors, zero.policy=T))
summary (model)

R Output:

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 1.5444201 0.2161106 7.1464 8.906e-13
ft .NWBIR74 0.0416524 0.0060981 6.8303 8.471e-12

Lambda: 0.083728 LR test value: 0.38241 p-value: 0.53632
Numerical Hessian standard error of lambda: 0.13428

Log likelihood: -117.7629

ML residual variance (sigma squared): 0.616, (sigma: 0.78486)
Number of observations: 100

Number of parameters estimated: 4

AIC: 243.53
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Simultaneous vs. Conditional Autoregression
Different Specifications?

e Previously, we considered the simultaneous specification:

> (i—m)+e

JEN()

1
[N (D)

Yi— Wi =@

e We might also consider the conditional specification:

1
yi|(yj 5 € N(i)) ~ N m+¢m > (- my), o
JEN(i)

e [ssues:

e Are the two specifications equivalent?
e |s the conditional specification even well defined?
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Simultaneous vs. Conditional Autoregression
Difficulties with the Conditional Specification

e Recall that with temporal data, we had the conditional specification

ye| (W, yi-1) ~ N + ¢yi-1,0%)

e We were able to write the joint distribution in terms of these
conditionals using;:

P(Y1, e yn) = (1) - p(Y2ly1) - o - D(Ynly1s oo Yn—1)

e This formula doesn't help us here.
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Simultaneous vs. Conditional Autoregression
Difficulties with the Conditional Specification

e In general, given a set of conditionals p(y;|y;, j # i), there does not
necessarily exist a joint distribution p(y1, ..., yn) with those
conditionals.

e However, in this case, we can show that

y ~ N(p, (I —¢W) 1o’
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ST G Y e
Data Analysis

R Code:

model <- spautolm(ft.SID74 ~ ft.NWBIR74, data=nc,
listw=nb2listw(neighbors, zero.policy=T), family="CAR")
summary (model)

R Output:

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 1.5446517 0.2156409 7.1631 7.889e-13
ft .NWBIR74 0.0416498 0.0060856 6.8440 7.704e-12

Lambda: 0.078486 LR test value: 0.3631 p-value: 0.54679
Numerical Hessian standard error of lambda: 0.12741

Log likelihood: -117.7726

ML residual variance (sigma squared): 0.6151, (sigma: 0.78428)
Number of observations: 100

Number of parameters estimated: 4

AIC: 243.55
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Non-Gaussian Data
What to do about non-Gaussian data?

e What if instead of

o 1
yi|(yj,j € N(i)) ~ N kit TR > (- ), o
JEN()
we had

. . . 1
vi|(yj,j € N(i)) ~ Pois m+¢|N—(m > wi—w)|?
JEN(3)

e [ssues:

e Impossible to write down joint distribution.
o Challenging to simulate.
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Spatial Autoregression Non-Gaussian Data

Some Preliminary Solutions

e Simulation: Gibbs sampler
Start with an initial (y1, ..., yn), simulate sequentially:

® y1|yjaj 7& 1
® y2|yjaj 7& 2

® Ynlyj i #n
and repeat.

In the long run, the samples y = (y1, ..., yn) will be samples from the
joint distribution.

e Estimation: coding and pseudo-likelihood
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Spatial Autoregression Non-Gaussian Data

Coding
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SLEVEIWATII YISO Non-Gaussian Data
Coding
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Non-Gaussian Data
Coding

e Consider maximizing the pseudo-likelihood I~/(¢) = p(Yblack |Ywhite)-
e This is easy because the y;'s at the black nodes are independent,
given the y;'s at the white nodes.
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Wrapping Up

Where are we?

® Wrapping Up
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What We've Learned

e The (parametric) bootstrap can be used to get valid standard errors.

e The MLE is a general way of coming up with an estimator: equivalent
to least squares in the temporal case, but better in the spatial case.

e There are two similar, but different formulations of spatial
autoregression: simultaneous and conditional.

e Things are easiest in the Gaussian setting, but Gibbs sampling and
coding can be used with non-Gaussian data.
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Administrivia

Piazza

Enroliment cap?

Homework 1: autoregression and bootstrap
e Will be posted by tomorrow night.
e Remember that you can work in pairs! (Hand in only one problem set
per pair.)
e Will be graded check, resubmit, or zero.

Edgar will be lecturing next Monday on R for spatial data.

Jingshu and Edgar will be holding workshops starting next week.
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