
Stat 300A Theory of Statistics

Homework 1
Andrea Montanari Due on October 3, 2018

• Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

• We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

• You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Properties of exponential families

Recall that an exponential family in canonical form is a class of probability measures on Rn, taking the form

Pθ(dx) =
1

Z(θ)
exp

{
〈θ,T (x)〉

}
ν(dx) , (1)

where ν(dx) is a reference measure on Rn. For the purpose of this problem, you can assume that Pθ has a
density with respect to the Lebesgue measure on Rn, which therefore can be written as

pθ(x) =
1

Z(θ)
exp

{
〈θ,T (x)〉

}
h(x) , (2)

where h : Rn → R≥0 is a measurable function. Alternatively, you can assume that Pθ is supported on
Zd, with probability mass function of the form (2). Recall that the log partition function is defined as
φ(θ) = logZ(θ), which is finite for θ ∈ ΘN (the natural parameter space). (In the following, you are not
required to justify the exchange of order of derivative and integrals.)

(a) Prove that ΘN is convex and φ : ΘN → R is a convex function.

(b) Prove the following identities hold for θ ∈ Θ◦
N (the interior of ΘN )

∂φ

∂θi
(θ) = Eθ{Ti(X)} , (3)

∂2φ

∂θi∂θj
(θ) = Covθ{Ti(X);Tj(X)} . (4)

(c) Assume that x 7→ h(x), x 7→ T (x) are differentiable. Prove that the following identity (Stein’s identity)
hold for any differentiable function g : Rn → R such that both sides make sense:

Eθ

{[
1

h(x)

∂h

∂xi
(x) + 〈θ, ∂T

∂xi
(x)〉

]
g(x)

}
+ Eθ

{
∂g

∂xi
(x)

}
= 0 (5)

(d) Assume that p is a multivariate Gaussian density, namely

p(x) =
1

(2π)n/2det(Σ)1/2
exp

{
−1

2
〈(x− µ)Σ−1(x− µ)〉

}
. (6)

Show that Stein’s identity in this case reduces to

E
{

(x− µ) g(x)
}

= ΣE
{
∇g(x)

}
. (7)
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# 2: Exercises on sufficient statistics

(a) Consider a statistical model composed of k probability distributions. Namely

P =
{
p1, p2, . . . , pk

}
, (8)

where p` are densities on Rn (we identify the probability distribution with its density).

Show that there exists a set of k − 1 sufficient statistics.

(b) Let θ = (θ1, θ2) ∈ R2 with θ1 < θ2 and define Pθ to be the distribution of n i.i.d. random variables
X1, . . . , Xn ∼ Unif([θ1, θ2]). Let xmin = min(x1, . . . , xn), and xmax = max(x1, . . . , xn). Prove that
(xmin, xmax) is a sufficient statistics for the model P = (Pθ).

(c) Consider the Gaussian linear model. Namely, for a fixed design matrix A ∈ Rn×d, we have Pθ =
N(Aθ, σ2In), θ ∈ Θ = Rd. Show that there exists a sufficient statistic of dimension d.

# 3: Optimal linear estimation in heteroscedastic Gaussian model

Assume σ1, . . . , σd > 0 to be known, and consider the statistical model Pθ = N(θ1,Σ), where Σ =
diag(σ2

1 , . . . , σ
2
d), and θ ∈ Θ = R (with 1 denoting the all-ones vector). In other words, Xi = θ + σiGi

where (Gi)i≤d ∼iid N(0, 1). (Here 〈u,v〉 =
∑m
i=1 uivi denotes the usual scalar product of u,v ∈ Rm.)

(a) Show that there exists a sufficient statistics of the form `(x) = 〈c,x〉, where c ∈ Rd, and determine
the vector c.

(b) Using the result at the previous point, determine the optimal linear estimator θ̂(x) = 〈a,x〉, with

respect to the square loss L(θ̂, θ) = (θ̂ − θ)2. Here optimality is to be understood in minimax sense,

that is we want to minimize RM(θ̂) among all linear estimators.

(c) Generalize the above to the case of general correlated Gaussian noise (i.e. Σ not necessarily diagonal,
but strictly positive definite).
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