

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (<https://www.gradescope.com>) for homework submission (you should have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Tweedie's formula

(a) Consider the normal mean model $P_\theta = N(\theta, \sigma^2)$, $\theta \in \Theta = \mathbb{R}$, and assume the variance σ^2 to be known. Let Q be a prior distribution for the parameter θ . Show that the posterior expectation (which is Bayes optimal for the loss $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$) is given by

$$\hat{\theta}_{\text{Bayes}}(x) = x + \sigma^2 \frac{d}{dx} \log p(x), \quad (1)$$

where $p(x) = \int p_\theta(x) Q(d\theta)$ is the marginal distribution of x .

(b) Generalize the above formula to the case of an exponential family in canonical form defined by the following density in \mathbb{R}^d :

$$p_\theta(\mathbf{x}) = \frac{1}{Z(\theta)} e^{\langle \theta, \mathbf{x} \rangle} h(\mathbf{x}). \quad (2)$$

(Here $h : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ can be assumed to be differentiable.)

2: Estimating a single bit

Consider a statistical model with two elements $\mathcal{P} = \{P_0, P_1\}$, on a common space $\mathcal{X} \subseteq \mathbb{R}^n$. Hence the parameter space is $\Theta = \{0, 1\}$. We consider a prior distribution Q on Θ , which is completely specified by $Q(\{1\}) = q$, whence $Q(\{0\}) = \bar{q} = 1 - q$. We will assume that P_0, P_1 have densities, denoted respectively by p_0, p_1 . Finally, we use the decision space $\mathcal{A} = \{0, 1\}$, and the loss

$$L(\hat{\theta}, \theta) = c_1 \mathbf{1}_{\{\theta=0, \hat{\theta}=1\}} + c_2 \mathbf{1}_{\{\theta=1, \hat{\theta}=0\}}. \quad (3)$$

(a) Derive an expression for the Bayes optimal estimator.

(b) Derive an expression for the Bayes risk $R_B(Q)$.

(c) Assume $c_1 = c_2 = 1$, and consider the case of a uniform prior $Q = Q_{\text{unif}}$. Show that the Bayes risk is given by $R_B(Q_{\text{unif}}) = (1 - \|P_0 - P_1\|_{\text{TV}})/2$ where the total variation distance of two probability distributions with densities p_0, p_1 is defined as

$$\|P_0 - P_1\|_{\text{TV}} = \frac{1}{2} \int |p_0(\mathbf{x}) - p_1(\mathbf{x})| d\mathbf{x}. \quad (4)$$

(d) Always assume $c_1 = c_2 = 1$. Provide an example of distributions $\{P_0, P_1\}$ such that $R_B(Q) > R_B(Q_{\text{unif}})$ for some non-uniform prior Q . For this point, you do not need to limit yourself to P_0, P_1 with a density, it might be easier to consider a finite sample space \mathcal{X} .

3: Stochastic block model

The objective of this problem is to derive a lower bound on the risk in estimating the community structure in a stochastic block model (SBM). We will be concerned with the two-groups symmetric SBM, which is a distribution over graphs defined as follows. The parameter is a vector $\theta \in \Theta = \{+1, -1\}^n$. For each $\theta \in \Theta$, P_θ is a probability distribution over undirected graphs $G = (V, E)$, with vertex set $V = [n] \equiv \{1, \dots, n\}$ and independent edges with edge probabilities

$$P_\theta((i, j) \in E) = \begin{cases} a/n & \text{if } \theta_i = \theta_j, \\ b/n & \text{if } \theta_i \neq \theta_j. \end{cases} \quad (5)$$

Equivalently, we can regard P_θ as a probability distribution over symmetric 0–1 matrices \mathbf{X} (the adjacency matrix of G).

We consider the loss function (for $\hat{\theta} \in \mathcal{A} = \{+1, -1\}^n$):

$$L(\hat{\theta}, \theta) = 1 - \left| \frac{1}{n} \langle \hat{\theta}, \theta \rangle \right|^2. \quad (6)$$

Note that $0 \leq L(\hat{\theta}, \theta) \leq 1$, with $L(\theta, \theta) = 0$. We further assume a uniform prior $Q(\{\theta\}) = 1/2^n$ for all θ . (Equivalently, under Q , θ has i.i.d. components $\theta_i \sim \text{Unif}(\{+1, -1\})$.)

Our objective in this homework is to derive a lower bound on the Bayes risk $R_B(Q)$.

(a) Does the loss function (6) seem a reasonable choice to you? Why not use something simpler, such as $\tilde{L}(\hat{\theta}, \theta) = \{1 - (\langle \hat{\theta}, \theta \rangle / n)\}/2$, which counts the number of incorrectly estimated vertex labels?

(b) Let $\hat{\theta}_B$ denote the Bayes optimal estimator. For any fixed permutation $\pi \in S_n$ (a permutation over n objects), and a vector $\mathbf{v} \in \mathbb{R}^n$, denote by \mathbf{v}^π the vector obtained by permuting the entries of \mathbf{v} according to π . Show that there exists a (possibly randomized) Bayes optimal estimator such that, for any fixed permutation π , $(\theta^\pi, \hat{\theta}_B^\pi)$ has the same distribution as $(\theta, \hat{\theta}_B)$.

[Hint: Let G^π the graph obtained by permuting the vertices of G . Show that given a Bayes optimal estimator $\hat{\theta}_{0,B}$, you can construct a new (possibly randomized) estimator $\hat{\theta}_B$, that has the same risk as $\hat{\theta}_{0,B}$ and such that $\hat{\theta}_B(G^\pi)$ has the same distribution as $\hat{\theta}_B(G^\pi)$.]

(c) Prove the lower bound

$$R_B(Q) \geq \frac{1}{2} \left(1 - \frac{1}{n} \right) \left\{ 1 - \mathbb{E} \left(\hat{\theta}_{B,1}(G) \hat{\theta}_{B,2}(G) \theta_1 \theta_2 \right) \right\}. \quad (7)$$

(d) Let $\theta_{\sim 1} = (\theta_2, \dots, \theta_n)$ be the vector of vertex labels, except θ_1 . Derive the following lower bounds

$$R_B(Q) \geq \frac{1}{2} \left(1 - \frac{1}{n} \right) \inf_{\hat{\theta}_1(\cdot), \hat{\theta}_2(\cdot)} \left\{ 1 - \mathbb{E} \left(\hat{\theta}_1(G; \theta_{\sim 1}) \hat{\theta}_2(G; \theta_{\sim 1}) \theta_1 \theta_2 \right) \right\} \quad (8)$$

$$\geq \frac{1}{2} \left(1 - \frac{1}{n} \right) \left\{ 1 - \sup_{\hat{\theta}_1(\cdot)} \mathbb{E} \left(\hat{\theta}_1(G; \theta_{\sim 1}) \theta_1 \right) \right\}. \quad (9)$$

In other words, we reduced the problem of lower bounding $R_B(Q)$ to the problem of lower bounding the Bayes risk in estimating θ_1 given observations $G, \theta_{\sim 1}$.

(e) Let $N_+ = \#\{i \in \{2, \dots, n\} : \theta_i = +1\}$ be the number of vertices among $\{2, \dots, n\}$ with label $+1$ and $N_- = \#\{i \in \{2, \dots, n\} : \theta_i = -1\}$ the number of vertices with label -1 . Further, define the number of edges that connect vertex 1 with these two sets of vertices:

$$X_+ = \#\{j \in \{2, \dots, n\} : \theta_j = +1, (1, j) \in E\}, \quad (10)$$

$$X_- = \#\{j \in \{2, \dots, n\} : \theta_j = -1, (1, j) \in E\}. \quad (11)$$

Prove that (N_+, N_-, X_+, X_-) is a sufficient statistic in the problem of estimating θ_1 from observations $(G, \theta_{\sim 1})$. Write the conditional distribution of (N_+, N_-, X_+, X_-) , given θ_1 .

At this point, we reduced the original problem to a much simpler one, namely the problem of estimating a uniformly random bit $\theta_1 \sim \text{Unif}(\{+1, -1\})$ from observations (N_+, N_-, X_+, X_-) . This problem further simplifies as $n \rightarrow \infty$ with a, b fixed. We will assume, for the sake of simplicity, $n = 2m + 1$. First of all $N_+ = n - 1 - N_-$ is a binomial random variable $\text{Binom}(n - 1, 1/2)$ and hence concentrates around $m = (n - 1)/2$. We can make the simplifying assumption that $N_+ = N_- = m$. Second, conditional on N_+, N_- , we see that X_+, X_- are independent with

$$\begin{aligned} \theta_1 = +1 &\Rightarrow X_+ \sim \text{Binom}(a/n, N_+), \quad X_- \sim \text{Binom}(b/n, N_-), \\ \theta_1 = -1 &\Rightarrow X_+ \sim \text{Binom}(b/n, N_+), \quad X_- \sim \text{Binom}(a/n, N_-), \end{aligned}$$

For large n , we can approximate the above binomials by Poisson distributions.

This suggests the following model. We need to estimate a single bit $\theta \sim \text{Unif}(\{+1, -1\})$ from observations (Z_+, Z_-) , whereby

$$\begin{aligned} \theta_1 = +1 &\Rightarrow Z_+ \sim \text{Poisson}(a/2), \quad Z_- \sim \text{Poisson}(b/2), \\ \theta_1 = -1 &\Rightarrow Z_+ \sim \text{Poisson}(b/2), \quad Z_- \sim \text{Poisson}(a/2), \end{aligned}$$

Denote by $R_B^s(a, b)$ the Bayes risk in this simplified one-bit problem (with loss $L^s(\hat{\theta}, \theta) = \mathbf{1}_{\{\hat{\theta} \neq \theta\}}$). It is possible to make the above argument rigorous, thus getting:

$$R_B(Q) \geq 2R_B^s(a, b) + o_n(1). \quad (12)$$

Here $o_n(1)$ denotes a term vanishing as $n \rightarrow \infty$.

(f) Derive an expression for $R_B^s(a, b)$ as a function of a, b and show that it vanishes as $a - b \rightarrow \infty$.

[Hint: Use the results of the previous problem.]