Stat 300A Theory of Statistics

Homework 2
Andrea Montanari Due on October 10, 2018

e Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

e We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

e You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Tweedie’s formula

(a) Consider the normal mean model Py = N(#,0?), § € © = R, and assume the variance o2 to be known.
Let Q be a prior distribution for the parameter . Show that the posterior expectation (which is Bayes
optimal for the loss L(6,0) = (6 — 0)?) is given by

d
eBayes(‘T) =T + Ug@ log p(.’L‘) ? (1)

where p(z) = [ pg(z) Q(df) is the marginal distribution of x.

(b) Generalize the above formula to the case of an exponential family in canonical form defined by the
following density in R?:

po(x) = % ) h(x) . ()

(Here h : RY — R>q can be assumed to be differentiable.)

# 2: Estimating a single bit

Consider a statistical model with two elements &2 = {P, P1}, on a common space X C R™. Hence the
parameter space is © = {0, 1}. We consider a prior distribution Q on ©, which is completely specified by
Q({1}) = q, whence Q({0}) =q =1 — q. We will assume that Py, P; have densities, denoted respectively
by po, p1- Finally, we use the decision space A = {0,1}, and the loss

L(O, 9) =C1 1{9:079:1} + c2 1{6:1,9:0} . (3)
(a) Derive an expression for the Bayes optimal estimator.
(b) Derive an expression for the Bayes risk R;(Q).

(¢) Assume ¢; = ¢o = 1, and consider the case of a uniform prior Q = Qunis. Show that the Bayes risk
is given by Rg(Qunif) = (1 — ||Po — P1||Tv)/2 where the total variation distance of two probability
distributions with densities pg, p1 is defined as

[Po Pl =5 [ Ipofa) ~ pr(a)]d @


https://www.gradescope.com

(d) Always assume ¢; = ¢ = 1. Provide an example of distributions {Pg, P1} such that Rs(Q) > Ry (Qunif)
for some non-uniform prior Q. For this point, you do not need to limit yourself to Py, P with a density,
it might be easier to consider a finite sample space X.

# 3: Stochastic block model

The objective of this problem is to derive a lower bound on the risk in estimating the community structure
in a stochastic block model (SBM). We will be concerned with the two-groups symmetric SBM, which is a
distribution over graphs defined as follows. The parameter is a vector 8 € © = {+1, —1}". For each 8 € ©,
Pg is a probability distribution over undirected graphs G = (V, E), with vertex set V = [n] = {1,...,n} and
independent edges with edge probabilities

o) = 0 ®

Equivalently, we can regard Py as a probability distribution over symmetric 0 — 1 matrices X (the adjacency
matrix of G).
We consider the loss function (for 8 € A = {+1,-1}"):

L0,0) =1 ]%<9,9>‘2. (6)

Note that 0 < L(6,0) < 1, with L(,8) = 0. We further assume a uniform prior Q({0}) = 1/2" for all 6.
(Equivalently, under Q, 0 has i.i.d. components 8; ~ Unif({+1,—1}).)
Our objective in this homework is to derive a lower bound on the Bayes risk R;(Q).

(a) Does the loss function @ seem a reasonable choice to you? Why not use something simpler, such as
L(6,0) ={1—((6,0)/n)}/2, which counts the number of incorrectly estimated vertex labels?

(b) Let 0g denote the Bayes optimal estimator. For any fixed permutation 7 € S,, (a permutation over
n objects), and a vector v € R", denote by v™ the vector obtained by permuting the entries of v
according to m. Show that there exists a (possibly randomized) Bayes optimal estimator such that, for

any fixed permutation 7, (0™, é’,;) has the same distribution as (6, 0g).

[Hint: Let G™ the graph obtained by permuting the vertices of G. Show that given a Bayes optimal
estimator 00 B, you can construct a new (possibly randomlzed) estimator 03, that has the same risk
as 0y, and such that Og(G™) has the same distribution as g(G)™.]

(¢) Prove the lower bound

R:(Q) > %(1 - l) {1 - E(éB,l(G)éB,Q(G)9192)} . (7)

n

(d) Let 6.1 = (02,...,0,) be the vector of vertex labels, except 6;. Derive the following lower bounds

Ro(@ 2 (1= 1) int {1 B(01(G:0)0(G:0-1)00) ) (®)
> %(1 — %) {1 — sup E(él(G; 9N1)91>} . 9)

01(-)

In other words, we reduced the problem of lower bounding Rz(Q) to the problem of lower bounding
the Bayes risk in estimating 6, given observations G, 0.1.



(e) Let Ny = #{i €{2,...,n}: 0, = +1} be the number of vertices among {2,...,n} with label +1 and
N_ =#{ie{2,...,n}: 0; = —1} the number of vertices with label —1. Further, define the number
of edges that connect vertex 1 with these two sets of vertices:

Xy =#{je{2,....,n}: 0, =41, (1,j) € E}, (10)
X_=#{je{2,...,n}: 0,=—-1, (1,j) € E}. (11)

Prove that (N4, N_, X, X_) is a sufficient statistic in the problem of estimating #; from observations
(G,0.1). Write the conditional distribution of (N4, N_, Xy, X_), given 6;.

At this point, we reduced the original problem to a much simpler one, namely the problem of estimating
a uniformly random bit ¢; ~ Unif({+1, —1})from observations (N4, N_, X, X_). This problem further
simplifies as n — oo with a,b fixed. We will assume, for the sake of simplicity, n = 2m + 1. First of
all N, = n—1— N_ is a binomial random variable Binom(n — 1,1/2) and hence concentrates around
m = (n — 1)/2. We can make the simplifying assumption that N = N_ = m. Second, conditional on
Ny, N_, we see that X, X_ are independent with

01 =41 = X, ~Binom(a/n,N;), X_ ~ Binom(b/n, N_),
01 =-1 = X, ~Binom(b/n,N;), X_ ~ Binom(a/n,N_),

For large n, we can approximate the above binomials by Poisson distributions.
This suggests the following model. We deed to estimate a single bit § ~ Unif({41, —1}) from observations
(Z4+,Z_), whereby

0, =+1 = Z, ~ Poisson(a/2), Z_ ~ Poisson(b/2),
61 =-1 = Z, ~ Poisson(b/2), Z_ ~ Poisson(a/2),

Denote by R (a,b) the Bayes risk in this simplified one-bit problem (with loss L*(6,6) = Lijsey). It is
possible to make the above argument rigorous, thus getting:

R:(Q) > 2 Ri(a,b) + on(1). (12)
Here 0,(1) denotes a term vanishing as n — oco.

(f) Derive an expression for R (a,b) as a function of a,b and show that it vanishes as a — b — oo.

[Hint: Use the results of the previous problem.]



	

