
Stat 300A Theory of Statistics

Homework 2
Andrea Montanari Due on October 10, 2018

• Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

• We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

• You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Tweedie’s formula

(a) Consider the normal mean model Pθ = N(θ, σ2), θ ∈ Θ = R, and assume the variance σ2 to be known.
Let Q be a prior distribution for the parameter θ. Show that the posterior expectation (which is Bayes

optimal for the loss L(θ̂, θ) = (θ̂ − θ)2) is given by

θ̂Bayes(x) = x+ σ2 d

dx
log p(x) , (1)

where p(x) =
∫
pθ(x)Q(dθ) is the marginal distribution of x.

(b) Generalize the above formula to the case of an exponential family in canonical form defined by the
following density in Rd:

pθ(x) =
1

Z(θ)
e〈θ,x〉 h(x) . (2)

(Here h : Rd → R≥0 can be assumed to be differentiable.)

# 2: Estimating a single bit

Consider a statistical model with two elements P = {P0, P1}, on a common space X ⊆ Rn. Hence the
parameter space is Θ = {0, 1}. We consider a prior distribution Q on Θ, which is completely specified by
Q({1}) = q, whence Q({0}) = q = 1 − q. We will assume that P0, P1 have densities, denoted respectively
by p0, p1. Finally, we use the decision space A = {0, 1}, and the loss

L(θ̂, θ) = c1 1{θ=0,θ̂=1} + c2 1{θ=1,θ̂=0} . (3)

(a) Derive an expression for the Bayes optimal estimator.

(b) Derive an expression for the Bayes risk RB(Q).

(c) Assume c1 = c2 = 1, and consider the case of a uniform prior Q = Qunif . Show that the Bayes risk
is given by RB(Qunif) = (1 − ‖P0 − P1‖TV)/2 where the total variation distance of two probability
distributions with densities p0, p1 is defined as∥∥P0 − P1

∥∥
TV

=
1

2

∫ ∣∣p0(x)− p1(x)
∣∣dx . (4)
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(d) Always assume c1 = c2 = 1. Provide an example of distributions {P0,P1} such that RB(Q) > RB(Qunif)
for some non-uniform prior Q. For this point, you do not need to limit yourself to P0,P1 with a density,
it might be easier to consider a finite sample space X .

# 3: Stochastic block model

The objective of this problem is to derive a lower bound on the risk in estimating the community structure
in a stochastic block model (SBM). We will be concerned with the two-groups symmetric SBM, which is a
distribution over graphs defined as follows. The parameter is a vector θ ∈ Θ = {+1,−1}n. For each θ ∈ Θ,
Pθ is a probability distribution over undirected graphs G = (V,E), with vertex set V = [n] ≡ {1, . . . , n} and
independent edges with edge probabilities

Pθ
(

(i, j) ∈ E
)

=

{
a/n if θi = θj ,

b/n if θi 6= θj .
(5)

Equivalently, we can regard Pθ as a probability distribution over symmetric 0−1 matrices X (the adjacency
matrix of G).

We consider the loss function (for θ̂ ∈ A = {+1,−1}n):

L(θ̂,θ) = 1−
∣∣∣ 1
n
〈θ̂,θ〉

∣∣∣2 . (6)

Note that 0 ≤ L(θ̂,θ) ≤ 1, with L(θ,θ) = 0. We further assume a uniform prior Q({θ}) = 1/2n for all θ.
(Equivalently, under Q, θ has i.i.d. components θi ∼ Unif({+1,−1}).)

Our objective in this homework is to derive a lower bound on the Bayes risk RB(Q).

(a) Does the loss function (6) seem a reasonable choice to you? Why not use something simpler, such as

L̃(θ̂,θ) = {1− (〈θ̂,θ〉/n)}/2, which counts the number of incorrectly estimated vertex labels?

(b) Let θ̂B denote the Bayes optimal estimator. For any fixed permutation π ∈ Sn (a permutation over
n objects), and a vector v ∈ Rn, denote by vπ the vector obtained by permuting the entries of v
according to π. Show that there exists a (possibly randomized) Bayes optimal estimator such that, for

any fixed permutation π, (θπ, θ̂
π

B) has the same distribution as (θ, θ̂B).

[Hint: Let Gπ the graph obtained by permuting the vertices of G. Show that given a Bayes optimal

estimator θ̂0,B, you can construct a new (possibly randomized) estimator θ̂B, that has the same risk

as θ̂0,B and such that θ̂B(Gπ) has the same distribution as θ̂B(G)π.]

(c) Prove the lower bound

RB(Q) ≥ 1

2

(
1− 1

n

) {
1− E

(
θ̂B,1(G)θ̂B,2(G)θ1θ2

)}
. (7)

(d) Let θ∼1 = (θ2, . . . , θn) be the vector of vertex labels, except θ1. Derive the following lower bounds

RB(Q) ≥ 1

2

(
1− 1

n

)
inf

θ̂1( · ),θ̂2( · )

{
1− E

(
θ̂1(G;θ∼1)θ̂2(G;θ∼1)θ1θ2

)}
(8)

≥ 1

2

(
1− 1

n

) {
1− sup

θ̂1( · )
E
(
θ̂1(G;θ∼1)θ1

)}
. (9)

In other words, we reduced the problem of lower bounding RB(Q) to the problem of lower bounding
the Bayes risk in estimating θ1 given observations G, θ∼1.
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(e) Let N+ = #{i ∈ {2, . . . , n} : θi = +1} be the number of vertices among {2, . . . , n} with label +1 and
N− = #{i ∈ {2, . . . , n} : θi = −1} the number of vertices with label −1. Further, define the number
of edges that connect vertex 1 with these two sets of vertices:

X+ = #
{
j ∈ {2, . . . , n} : θj = +1, (1, j) ∈ E

}
, (10)

X− = #
{
j ∈ {2, . . . , n} : θj = −1, (1, j) ∈ E

}
. (11)

Prove that (N+, N−, X+, X−) is a sufficient statistic in the problem of estimating θ1 from observations
(G,θ∼1). Write the conditional distribution of (N+, N−, X+, X−), given θ1.

At this point, we reduced the original problem to a much simpler one, namely the problem of estimating
a uniformly random bit θ1 ∼ Unif({+1,−1})from observations (N+, N−, X+, X−). This problem further
simplifies as n → ∞ with a, b fixed. We will assume, for the sake of simplicity, n = 2m + 1. First of
all N+ = n − 1 − N− is a binomial random variable Binom(n − 1, 1/2) and hence concentrates around
m = (n − 1)/2. We can make the simplifying assumption that N+ = N− = m. Second, conditional on
N+, N−, we see that X+, X− are independent with

θ1 = +1 ⇒ X+ ∼ Binom(a/n,N+), X− ∼ Binom(b/n,N−) ,

θ1 = −1 ⇒ X+ ∼ Binom(b/n,N+), X− ∼ Binom(a/n,N−) ,

For large n, we can approximate the above binomials by Poisson distributions.
This suggests the following model. We deed to estimate a single bit θ ∼ Unif({+1,−1}) from observations

(Z+, Z−), whereby

θ1 = +1 ⇒ Z+ ∼ Poisson(a/2), Z− ∼ Poisson(b/2) ,

θ1 = −1 ⇒ Z+ ∼ Poisson(b/2), Z− ∼ Poisson(a/2) ,

Denote by RsB(a, b) the Bayes risk in this simplified one-bit problem (with loss Ls(θ̂, θ) = 1{θ̂ 6=θ}). It is
possible to make the above argument rigorous, thus getting:

RB(Q) ≥ 2RsB(a, b) + on(1) . (12)

Here on(1) denotes a term vanishing as n→∞.

(f) Derive an expression for RsB(a, b) as a function of a, b and show that it vanishes as a− b→∞.

[Hint: Use the results of the previous problem.]
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