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Problem 1: Tweedie’s formula

Part a
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In the general case we have:
@) = [ e nw)QLas)
9 _ 1 L, 0 1 0y 9
= 5 980 = T )| [ Ztetm@auan) + [ e (Gm e
[ e () (@)Q(d6)

=0p,;+

)
T ﬁew,az)h(x)Q(dg)

A 0
=0p;+ oz log(h(x))

1,2
1 5 X

V2ro2 €2

Note in the Gaussian case h(x) = and the natural parameter is § = %, so this agrees with

the explicit calculation in part a.

Problem 2: Estimating a single bit

Part a

The posterior distribution of 6 given the data is
gP(X =z|0 =1)
gP(X =2zl =1)+JP(X =z|0 =0)
qp1(z)
qp1 () + qp2(x)

p@=1X=2x)=
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The the Bayes optimal estimator minimizes

qpo(x)
qp1(x) + qpo(z)

qp1(x)

BIL(O(@),0)|X = 2] = 2o s oy

P(O(z) = 0lz) + ¢1

for each x.

The Bayes estimator is then

93(.2) =

R 0 when cogp1 (z) < e1qpo(x)
1 otherwise .

Part b

Let Ry ={x € X :fp(x) =0} and R, = {x € X : Op(z) = 1}.

E[L(6,0)] = c1P(0 = 0,2 € R)) + coP(0 = 1,2 € Ry)
=C1CY/ p0($)+C2Q/ p1()
R] RO

Part ¢

Notice that when ¢; = ¢ and ¢ = ¢ we have that Ry = {z € X : po(x) > p1(z)} and Ry = RE.
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The result follows after diving this expression by 2.

Part d

Consider X = {+1}. Let Py(X =1) =0 and P;(X; = .85). With ¢ = .5 we see that the Bayes estimator is
0p(z) = x and the risk is El,5, = .075 With ¢ = .9, we see that the Bayes estimator is 05(z) = 1 and the
Bayes risk is .1.

Problem 3: Stochastic Block Model

Part a

Note that the problem is symmetric in the group labelings, so we want a lost function that does not change
when changing the ground truth 6 to —f. Simply counting the number of correctly labeled data points would
not suffice. The proposed loss function equivalent to counting the number of correctly labeled points after
accounting for this ambiguity.
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Part b

Let éo(x) be a Bayes optimal estimator, i.e.

Rp(00(G),Q) = i%f Rp(A,Q) = Rp(Q).

For a permutation m, denote the inverse permutaiton by 7. We can construct a symmetric version of
this estimator by taking a uniformly random permutation and then applying this estimator to the permuted
data: 61(G) = 69(G™)™ where 7 is a permutation chosen uniformly at random. We will now show that

R5(01(G),Q) = Rp(o(G),Q), which implies that 0; is a Bayes estimator.

Fix any permutation 7 and consider the risk of the estimator 6, (G) = 6y(G™)™:
Ra(0:.Q) = [ [ LGy(G") 0)iriDQ
el
= // L(0o(G™),0™)dPyDQ using the symmetry of L
e]

:/Q/GL(éo(G),G)dPgDQ since (G™,0™) £ (G, 0)
= Rg(0,Q)
= Rp(Q).

Since él is a mixture of the estimators éﬂ, this implies that Rp (él, Q) = Rp(Q) and hence é1 is a Bayes

estimator.

To show the desired symmetry, let m be a fixed permutation and let o be a uniformly random permu-
tation. Then

(67,61(G™)) = (67, 60(G™)")
(

Part ¢

Let 6 be the symmetric Bayes estimator from the previous part.

1— ﬁw,ef =1- =Y E[0:0;0:0;] — 1/n
i#]
1 n(n —1) P .
=(1--)- 7215321[5[01929192] by the symmetry we proved in (b)
" T
1 .
=(1- ﬁ)(l - EZE[91929192])

i#j

Part d

We continue on from the previous part:

1 AA 1 N .
(1- ﬁ)(l — EZ]E[91029102]) >(1—-=) inf (1- EZE[Gl(G)Gg(G)Glﬂg]) (since the lhs is a special case of the rhs)
)

i+ " 0@ i#]
1

>(1--) inf (1- EZE[él(G, 0.1)02(G, 01)0105]) (inf over larger set)
n 01(G,9N1)02(G,0N1) itj
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Lastly, notice that él(G, 9~1)é2 (G,0.1)02 can be combined into a single function of G and 6.1, which we
can write as 01(G;0.1).

Part e

P(G,0..1)9, = P(G|0.101)P(0..1|61)
XX P(G\9N101)

o [T (@/m™=estemy#es TT (1= a/m)os=es (1= b/n)'ese
(i,J)EE (1,5)¢E
o (a/n)X+191:1+X7191:71(b/n)X+191:71+X7101:1

(1— a/n)(N+7X+)191:1+(N_7X_)191:,1(1 _ b/n)(N+*X+)191:—1+(N—*X—)Ielzl

The likelihood is only a function of (N4, N_, X, X_) as well as the parameter 6;, so by the Fisher-
Neyman criterion, these are the sufficient statistics.

Part f

We have now reduced it to a one-bit estimation problem. We can use problem 2c to get an exact expression for
the Bayes risk, so it suffices to find an expression for the TV distance ||Py—1(Z4,Z-) — Po——1(Z4, Z_) | v

1
|Poes(Z4,2-) = Poes(Z4, Z0) Iy = 5 / \PL(Z4,Z-) — Po(Z4,Z-)|

1 © e—a/2—b/2 ery -
- 522 zlyl2e+y |a®b? — a¥b7|

=0 y=0

This expression is exact, but challenging to work with, so we will reduce to a simpler problem. Consider
estimators that are a function only of Z,. Call the Bayes risk in this new problem R¢s'icted(q b). Since
this is a restriction of the problem above, we have that Ryysiicted(q b) > R%(a,b), so it suffices to show that
Rgistricted(a b) =0

, .

From problem 2¢, we have that ||Py — Pi|py = 1/2 [ [p1(z) — po(z)| and using since [ pq(x) —po(x) = 0
we have that || Py — Pilly = [z, p1(z) —po(z) = Pi(R1) — Po(R1). Since Ry = {z : p1(2) > po(z)}, we have
that for any A, Py(R1) — Po(R1) > P1(A) — Py(A), so we arrive at a well-known property of total variation
distance:

[Po = Pillpy > Pi(A) — Po(A).

We will consider the set A = [“F2 co). Notice that Py—i(Z4 € A) > 1 —8a/(a — b)? by Chebyshev’s
inequality. We similarly have Pp—_1(Z, € A) < 8b/(a — b)?. Together with the above, this implies that if
a — b — oo such that b/(a — b),a/(a — b) are bounded, then ||Py—1(Zy) — Po——1(Z4)| 1 — 1 and using 2c¢
this implies that Ry*ticted(q, b) — 0, as desired.



