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Problem 1: Tweedie’s formula

Part a

p(x) =

∫
1√

2πσ2
e
−1

2σ2
(x−θ)2Q(dθ)

=⇒ d

dx
log p(x) =

1
σ2

∫
1√

2πσ2
(θ − x)e

−1

2σ2
(x−θ)2Q(dθ)∫

1√
2πσ2

e
−1

2σ2
(x−θ)2Q(dθ)

=
1

σ2
(θ̂B − x)

Part b

In the general case we have:

p(x) =

∫
1

Z(θ)
e〈θ,x〉h(x)Q(dθ)

=⇒ ∂

∂xi
log p(x) =

1∫
1

Z(θ)e
〈θ,x〉h(x)Q(dθ)

[

∫
1

Z(θ)
θie
〈θ,x〉h(x)Q(dθ) +

∫
1

Z(θ)
e〈θ,x〉(

∂

∂xi
h)(x)Q(dθ)]

= θ̂B,i +

∫
1

Z(θ)e
〈θ,x〉( ∂

∂xi
h)(x)Q(dθ)∫

1
Z(θ)e

〈θ,x〉h(x)Q(dθ)

= θ̂B,i +
∂

∂xi
log(h(x))

Note in the Gaussian case h(x) = 1√
2πσ2

e
−1

2σ2
x2

and the natural parameter is θ = µ
σ2 , so this agrees with

the explicit calculation in part a.

Problem 2: Estimating a single bit

Part a

The posterior distribution of θ given the data is

p(θ = 1|X = x) =
qP (X = x|θ = 1)

qP (X = x|θ = 1) + q̄P (X = x|θ = 0)

=
qp1(x)

qp1(x) + q̄p2(x)
.
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The the Bayes optimal estimator minimizes

E[L(θ̂(x), θ)|X = x] = c2
qp1(x)

qp1(x) + q̄p0(x)
P (θ̂(x) = 0|x) + c1

q̄p0(x)

qp1(x) + q̄p0(x)
P (θ̂(x) = 1|x)

for each x.

The Bayes estimator is then

θ̂B(x) =

{
0 when c0qp1(x) ≤ c1q̄p0(x)

1 otherwise .

Part b

Let R0 = {x ∈ X : θ̂B(x) = 0} and R1 = {x ∈ X : θ̂B(x) = 1}.

E[L(θ̂, θ)] = c1P (θ = 0, x ∈ R1) + c2P (θ = 1, x ∈ R0)

= c1q̄

∫
R1

p0(x) + c2q

∫
R0

p1(x)

Part c

Notice that when c1 = c2 and q = q̄ we have that R0 = {x ∈ X : p0(x) ≥ p1(x)} and R1 = R{
0.

1− ‖P0 − P1‖tv = 1− 1

2

∫
X
|p0(x)− p1(x)|dx

= 1− 1

2

∫
R0

p0(x)− p1(x)− 1

2

∫
R1

p1(x)− p0(x)

=
1

2

∫
R1∪R0

p0(x) +
1

2

∫
R1∪R0

p1(x)− 1

2

∫
R0

p0(x)− p1(x)− 1

2

∫
R1

p1(x)− p0(x)

=

∫
R1

p0(x) +

∫
R0

p1(x)

The result follows after diving this expression by 2.

Part d

Consider X = {±1}. Let P0(X = 1) = 0 and P1(X1 = .85). With q = .5 we see that the Bayes estimator is

θ̂B(x) = x and the risk is EI ˆθ 6=θ = .075 With q = .9, we see that the Bayes estimator is θ̂B(x) = 1 and the
Bayes risk is .1.

Problem 3: Stochastic Block Model

Part a

Note that the problem is symmetric in the group labelings, so we want a lost function that does not change
when changing the ground truth θ to −θ. Simply counting the number of correctly labeled data points would
not suffice. The proposed loss function equivalent to counting the number of correctly labeled points after
accounting for this ambiguity.
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Part b

Let θ̂0(x) be a Bayes optimal estimator, i.e.

RB(θ̂0(G), Q) = inf
A
RB(A,Q) = RB(Q).

For a permutation π, denote the inverse permutaiton by π̄. We can construct a symmetric version of
this estimator by taking a uniformly random permutation and then applying this estimator to the permuted
data: θ̂1(G) = θ̂0(Gπ)π̄ where π is a permutation chosen uniformly at random. We will now show that

RB(θ̂1(G), Q) = RB(θ̂0(G), Q), which implies that θ̂1 is a Bayes estimator.

Fix any permutation π and consider the risk of the estimator θ̂π(G) = θ̂0(Gπ)π̄:

RB(θ̂π, Q) =

∫
θ

∫
G

L(θ̂0(Gπ)π̄, θ)dPθDQ

=

∫
θ

∫
G

L(θ̂0(Gπ), θπ)dPθDQ using the symmetry of L

=

∫
θ

∫
G

L(θ̂0(G), θ)dPθDQ since (Gπ, θπ)
d
= (G, θ)

= RB(θ̂0, Q)

= RB(Q).

Since θ̂1 is a mixture of the estimators θ̂π, this implies that RB(θ̂1, Q) = RB(Q) and hence θ̂1 is a Bayes
estimator.

To show the desired symmetry, let π be a fixed permutation and let α be a uniformly random permu-
tation. Then

(θπ, θ̂1(Gπ)) = (θπ, θ̂0(Gπα)ᾱ)

= (θπ, θ̂0(Gα
′
)ᾱ
′π)

d
= (θ, θ̂1(G)).

Part c

Let θ̂ be the symmetric Bayes estimator from the previous part.

1− 1

n2
E〈θ̂, θ〉2 = 1− 1

n2

∑
i 6=j

E[θ̂iθ̂jθiθj ]− 1/n

= (1− 1

n
)− n(n− 1)

n2
E
∑
i 6=j

E[θ̂1θ̂2θ1θ2] by the symmetry we proved in (b)

= (1− 1

n
)(1− E

∑
i6=j

E[θ̂1θ̂2θ1θ2])

Part d

We continue on from the previous part:

(1− 1

n
)(1− E

∑
i 6=j

E[θ̂1θ̂2θ1θ2]) ≥ (1− 1

n
) inf
θ̂1(G)θ̂2(G)

(1− E
∑
i 6=j

E[θ̂1(G)θ̂2(G)θ1θ2]) (since the lhs is a special case of the rhs)

≥ (1− 1

n
) inf
θ̂1(G,θ∼1)θ̂2(G,θ∼1)

(1− E
∑
i6=j

E[θ̂1(G, θ∼1)θ̂2(G, θ∼1)θ1θ2]) (inf over larger set)
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Lastly, notice that θ̂1(G, θ∼1)θ̂2(G, θ∼1)θ2 can be combined into a single function of G and θ∼1, which we

can write as θ̂1(G; θ∼1).

Part e

P (G, θ∼1)θ1 = P (G|θ∼1θ1)P (θ∼1|θ1)

∝ P (G|θ∼1θ1)

∝
∏

(i,j)∈E

(a/n)Iθ1=θj (b/n)Iθ1 6=θj
∏

(1,j)/∈E

(1− a/n)Iθ1=θj (1− b/n)Iθ1 6=θj

∝ (a/n)X+Iθ1=1+X−Iθ1=−1(b/n)X+Iθ1=−1+X−Iθ1=1

(1− a/n)(N+−X+)Iθ1=1+(N−−X−)Iθ1=−1(1− b/n)(N+−X+)Iθ1=−1+(N−−X−)Iθ1=1

The likelihood is only a function of (N+, N−, X+, X−) as well as the parameter θ1, so by the Fisher-
Neyman criterion, these are the sufficient statistics.

Part f

We have now reduced it to a one-bit estimation problem. We can use problem 2c to get an exact expression for
the Bayes risk, so it suffices to find an expression for the TV distance ‖Pθ=1(Z+, Z−)− Pθ=−1(Z+, Z−)‖TV

‖Pθ=1(Z+, Z−)− Pθ=−1(Z+, Z−)‖TV =
1

2

∫
|P1(Z+, Z−)− P0(Z+, Z−)|

=
1

2

∞∑
x=0

∞∑
y=0

e−a/2−b/2

x!y!2x+y
|axby − aybx|

This expression is exact, but challenging to work with, so we will reduce to a simpler problem. Consider
estimators that are a function only of Z+. Call the Bayes risk in this new problem RrestrictedB (a, b). Since
this is a restriction of the problem above, we have that RrestrictedB (a, b) ≥ RsB(a, b), so it suffices to show that
RrestrictedB (a, b)→ 0.

From problem 2c, we have that ‖P0 − P1‖TV = 1/2
∫
|p1(x)−p0(x)| and using since

∫
p1(x)−p0(x) = 0

we have that ‖P0 − P1‖TV =
∫
R1
p1(x)− p0(x) = P1(R1)−P0(R1). Since R1 = {x : p1(x) > p0(x)}, we have

that for any A, P1(R1)− P0(R1) ≥ P1(A)− P0(A), so we arrive at a well-known property of total variation
distance:

‖P0 − P1‖TV ≥ P1(A)− P0(A).

We will consider the set A = [a+b
4 ,∞). Notice that Pθ=1(Z+ ∈ A) ≥ 1 − 8a/(a − b)2 by Chebyshev’s

inequality. We similarly have Pθ=−1(Z+ ∈ A) ≤ 8b/(a − b)2. Together with the above, this implies that if
a− b→∞ such that b/(a− b), a/(a− b) are bounded, then ‖Pθ=1(Z+)− Pθ=−1(Z+)‖TV → 1 and using 2c
this implies that RrestrictedB (a, b)→ 0, as desired.


