
Stat 300A Theory of Statistics

Homework 3
Andrea Montanari Due on October 17, 2018

• Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

• We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

• You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Convex compact parameter space

Let P = {Pθ : θ ∈ Θ} be a statistical model with Θ ⊆ Rd a convex compact set, and Θ is not a singleton
(Θ contains at least two points). Let Θε = {θ : d(θ,Θ) ≤ ε}, where d(θ,Θ) ≡ inf{v ∈ Θ : ‖v − θ‖2}.
Assume the estimator θ̂ to take values in Rd (i.e. the decision space is A = Rd).

(a) Consider the case of square loss L(θ̂,θ) = ‖θ̂−θ‖22. Assume that (for some ε, δ > 0) Pθ(θ̂(X) 6∈ Θε) > δ

for all θ ∈ Θ. Prove that θ̂( · ) cannot be minimax optimal.

(b) Keeping to the square loss, consider now the linear model Pθ = N(Dθ, σ2In), where D ∈ Rn×d is a
known design matrix, of rank d, and σ2 > 0 is known noise variance. Prove that no affine estimator
(i.e. no etimator of the form θ̂(y) = My + θ0) can be minimax optimal.

(c) Produce a counter-example showing that the conclusion at point (a) does no longer hold if Θ is not
convex.

(d) Consider the case d = 1, Θ = [θmin, θmax], and assume that L is continuous, with a 7→ L(a, θ) is
strictly decreasing for a < θ, and strictly increasing for a > θ. Assume that (for some ε, δ > 0)

Pθ(θ̂(X) 6∈ Θε) > δ for all θ ∈ Θ, and that the risk function θ 7→ R(θ̂; θ) is continuous. Prove that θ̂
cannot be minimax optimal.

What can you conclude if a 7→ L(a, θ) is decreasing (but not necessarily strictly decreasing) for a < θ
and increasing (but not necessarily strictly decreasing) for a > θ.

# 2: On the minimax estimator of a binomial parameter

Let X ∼ Pθ = Binom(n, θ), where θ ∈ Θ = [0, 1], and we consider the square loss L(θ̂, θ) = (θ̂ − θ)2. Recall
that a minimax estimator is given by

θ̂MM(X) =

√
n

1 +
√
n
· X
n

+
1

1 +
√
n
· 1

2
. (1)

We know already that this is Bayes optimal with respect to the prior distribution Q = Beta(
√
n/2,

√
n/2).

(a) Consider the case n = 1. Construct a two points prior Q = qδθ1 + (1 − q)δθ2 whose Bayes optimal

estimator coincides with θ̂MM.
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(b) Show that, for any n, there exists a prior supported on m number of points for some integer m, whose

Bayes estimators coincides with θ̂MM.

[You can assume that the linear system
∑m
i=0 qi(i/m)k =

∫
θkQ(dθ), k ∈ {0, . . . , n+ 1} has a solution

q = (q0, . . . , qm) ≥ 0 for m large enough. (Here Q = Beta(
√
n/2,

√
n/2).)]

# 3: Minimax estimation of sparse vectors

Let Θ ⊆ Rd and consider estimation with a loss L : A×Rd → R≥0 upper bounded by L0: supa∈A,θ∈Θ L(a,θ) ≤
L0.

(a) Prove that, for any probability distribution Q on Rd,

RM(Θ) ≥ RB(Q)− L0 Q(Θc) , (2)

where Q(Θc) =
∫

Θc Q(dθ) is the probability of Θc under Q, and RB(Q) =
∫
Rd R(A;θ)Q(dθ). (Here we

assume that Pθ is not only defined for θ ∈ Θ, but for any θ ∈ Rd.)

Given two integers 1 ≤ k ≤ d, and a real number M ≥ 0, define the set of vectors

Θ(d, k;M) =
{
θ ∈ {0,+M,−M}d : ‖θ‖0 ≤ k

}
, (3)

where ‖θ‖0 = |supp(θ)| is the number of non-zero entries in θ. We we are interested in the minimax error
for the Gaussian location model with this parameters space P = {Pθ : θ ∈ Θ(d, k;M)}, action space Rd,
and square loss L(θ̂,θ) = ‖θ̂ − θ‖22. We will denote this minimax risk by RM(d, k;M).

(b) Prove that, in determining the minimax error, we can restrict ourselves to estimators that take values
in A = Bd(0;M

√
k) = {θ ∈ Rd : ‖θ‖2 ≤ M

√
k}. Further, we can replace the square loss by

L̃(θ̂,θ) = min(‖θ̂ − θ‖22; 4M2k)

(c) Prove that there exists a least favorable prior Q∗, and that it can be taken of the form

Q∗ =

k∑
`=0

p`Q` (4)

where p = (p`)0≤`≤k is a probability distribution over {0, 1, . . . , k}, and Q` is the uniform distribution
over vectors in θ ∈ Θ(d, k;M) with ‖θ‖0 = `.

[Hint: Note that this claim is equivalent to Q∗({θ1}) = Q∗({θ2}), for any θ1,θ2 ∈ Θ(d, k;M) with
‖θ1‖0 = ‖θ2‖0.]

Computing the Bayes risk for the prior Q∗ described above is somewhat intricate. We thus consider a
simpler prior QM,ε. Under QM,ε the coordinates of θ are independent with QM,ε({θi = M}) = QM,ε({θi =
−M}) = ε/2, and QM,ε({θi = 0}) = 1− ε. Equivalently QM,ε = qM,ε × · · · × qM,ε, where qM,ε is the three
points distribution qM,ε = (1− ε)δ0 + (ε/2)δM + (ε/2)δ−M .

(d) Prove that

RM(d, k;M) ≥ R̃B(QM,ε)− 4M2k P
(

Binom(d, ε) > k
)
. (5)

where R̃B is the Bayes risk for the loss function L̃.
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Setting ε = (k/d)(1− η), it is possible to show (for instance by Bernstein inequality [BLM13]) that

P
(

Binom(d, ε) > k
)
≤ e−kη

2/4 . (6)

Let RB denote the Bayes risk for the square loss. It is also possible to show that

R̃B(QM,ε) ≥ RB(QM,ε)− (M2 + 1) oη(k) , (7)

where oη(k) is a quantity such that limk→∞ oη(k)/k = 0 for any η > 0.

(e) Prove that the above implies implies

RM(d, k;M) ≥ dRB(qM,ε)− (M2 + 1)oη(k) . (8)

where RB(qM,ε) is the Bayes risk for the one-dimensional problem of estimating θ ∼ qM,ε from X =
θ + Z, Z ∼ N(0, 1).

Optional

This question will not be graded and is mainly food for thought:

• Continuing from te previous problem, what is the behavior of RB(qM,ε) with ε and M? What are the
consequences for RM(d, k;M)? Of particular interest is the regime ε� 1 (corresponding to k � d).
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