

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (<https://www.gradescope.com>) for homework submission (you should have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Convex compact parameter space

Let $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$ be a statistical model with $\Theta \subseteq \mathbb{R}^d$ a convex compact set, and Θ is not a singleton (Θ contains at least two points). Let $\Theta^\varepsilon = \{\theta : d(\theta, \Theta) \leq \varepsilon\}$, where $d(\theta, \Theta) \equiv \inf\{v \in \Theta : \|v - \theta\|_2\}$. Assume the estimator $\hat{\theta}$ to take values in \mathbb{R}^d (i.e. the decision space is $\mathcal{A} = \mathbb{R}^d$).

- Consider the case of square loss $L(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$. Assume that (for some $\varepsilon, \delta > 0$) $P_\theta(\hat{\theta}(\mathbf{X}) \notin \Theta^\varepsilon) > \delta$ for all $\theta \in \Theta$. Prove that $\hat{\theta}(\cdot)$ cannot be minimax optimal.
- Keeping to the square loss, consider now the linear model $P_\theta = N(\mathbf{D}\theta, \sigma^2 I_n)$, where $\mathbf{D} \in \mathbb{R}^{n \times d}$ is a known design matrix, of rank d , and $\sigma^2 > 0$ is known noise variance. Prove that no affine estimator (i.e. no estimator of the form $\hat{\theta}(\mathbf{y}) = \mathbf{M}\mathbf{y} + \theta_0$) can be minimax optimal.
- Produce a counter-example showing that the conclusion at point (a) does no longer hold if Θ is not convex.
- Consider the case $d = 1$, $\Theta = [\theta_{\min}, \theta_{\max}]$, and assume that L is continuous, with $a \mapsto L(a, \theta)$ is strictly decreasing for $a < \theta$, and strictly increasing for $a > \theta$. Assume that (for some $\varepsilon, \delta > 0$) $P_\theta(\hat{\theta}(\mathbf{X}) \notin \Theta^\varepsilon) > \delta$ for all $\theta \in \Theta$, and that the risk function $\theta \mapsto R(\hat{\theta}; \theta)$ is continuous. Prove that $\hat{\theta}$ cannot be minimax optimal.

What can you conclude if $a \mapsto L(a, \theta)$ is decreasing (but not necessarily strictly decreasing) for $a < \theta$ and increasing (but not necessarily strictly decreasing) for $a > \theta$.

2: On the minimax estimator of a binomial parameter

Let $X \sim P_\theta = \text{Binom}(n, \theta)$, where $\theta \in \Theta = [0, 1]$, and we consider the square loss $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$. Recall that a minimax estimator is given by

$$\hat{\theta}_{\text{MM}}(X) = \frac{\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{X}{n} + \frac{1}{1 + \sqrt{n}} \cdot \frac{1}{2}. \quad (1)$$

We know already that this is Bayes optimal with respect to the prior distribution $Q = \text{Beta}(\sqrt{n}/2, \sqrt{n}/2)$.

- Consider the case $n = 1$. Construct a two points prior $Q = q\delta_{\theta_1} + (1 - q)\delta_{\theta_2}$ whose Bayes optimal estimator coincides with $\hat{\theta}_{\text{MM}}$.

(b) Show that, for any n , there exists a prior supported on m number of points for some integer m , whose Bayes estimators coincides with $\hat{\theta}_{\text{MM}}$.

[You can assume that the linear system $\sum_{i=0}^m q_i(i/m)^k = \int \theta^k Q(d\theta)$, $k \in \{0, \dots, n+1\}$ has a solution $\mathbf{q} = (q_0, \dots, q_m) \geq 0$ for m large enough. (Here $Q = \text{Beta}(\sqrt{n}/2, \sqrt{n}/2)$.)]

3: Minimax estimation of sparse vectors

Let $\Theta \subseteq \mathbb{R}^d$ and consider estimation with a loss $L : \mathcal{A} \times \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ upper bounded by L_0 : $\sup_{a \in \mathcal{A}, \theta \in \Theta} L(a, \theta) \leq L_0$.

(a) Prove that, for any probability distribution Q on \mathbb{R}^d ,

$$R_M(\Theta) \geq R_B(Q) - L_0 Q(\Theta^c), \quad (2)$$

where $Q(\Theta^c) = \int_{\Theta^c} Q(d\theta)$ is the probability of Θ^c under Q , and $R_B(Q) = \int_{\mathbb{R}^d} R(A; \theta) Q(d\theta)$. (Here we assume that P_θ is not only defined for $\theta \in \Theta$, but for any $\theta \in \mathbb{R}^d$.)

Given two integers $1 \leq k \leq d$, and a real number $M \geq 0$, define the set of vectors

$$\Theta(d, k; M) = \left\{ \theta \in \{0, +M, -M\}^d : \|\theta\|_0 \leq k \right\}, \quad (3)$$

where $\|\theta\|_0 = |\text{supp}(\theta)|$ is the number of non-zero entries in θ . We are interested in the minimax error for the Gaussian location model with this parameters space $\mathcal{P} = \{P_\theta : \theta \in \Theta(d, k; M)\}$, action space \mathbb{R}^d , and square loss $L(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$. We will denote this minimax risk by $R_M(d, k; M)$.

(b) Prove that, in determining the minimax error, we can restrict ourselves to estimators that take values in $\mathcal{A} = B^d(\mathbf{0}; M\sqrt{k}) = \{\theta \in \mathbb{R}^d : \|\theta\|_2 \leq M\sqrt{k}\}$. Further, we can replace the square loss by $\tilde{L}(\hat{\theta}, \theta) = \min(\|\hat{\theta} - \theta\|_2^2; 4M^2k)$

(c) Prove that there exists a least favorable prior Q_* , and that it can be taken of the form

$$Q_* = \sum_{\ell=0}^k p_\ell Q_\ell \quad (4)$$

where $p = (p_\ell)_{0 \leq \ell \leq k}$ is a probability distribution over $\{0, 1, \dots, k\}$, and Q_ℓ is the uniform distribution over vectors in $\theta \in \Theta(d, k; M)$ with $\|\theta\|_0 = \ell$.

[Hint: Note that this claim is equivalent to $Q_*(\{\theta_1\}) = Q_*(\{\theta_2\})$, for any $\theta_1, \theta_2 \in \Theta(d, k; M)$ with $\|\theta_1\|_0 = \|\theta_2\|_0$.]

Computing the Bayes risk for the prior Q_* described above is somewhat intricate. We thus consider a simpler prior $Q_{M, \varepsilon}$. Under $Q_{M, \varepsilon}$ the coordinates of θ are independent with $Q_{M, \varepsilon}(\{\theta_i = M\}) = Q_{M, \varepsilon}(\{\theta_i = -M\}) = \varepsilon/2$, and $Q_{M, \varepsilon}(\{\theta_i = 0\}) = 1 - \varepsilon$. Equivalently $Q_{M, \varepsilon} = \mathbf{q}_{M, \varepsilon} \times \dots \times \mathbf{q}_{M, \varepsilon}$, where $\mathbf{q}_{M, \varepsilon}$ is the three points distribution $\mathbf{q}_{M, \varepsilon} = (1 - \varepsilon)\delta_0 + (\varepsilon/2)\delta_M + (\varepsilon/2)\delta_{-M}$.

(d) Prove that

$$R_M(d, k; M) \geq \tilde{R}_B(Q_{M, \varepsilon}) - 4M^2k \mathbb{P}(\text{Binom}(d, \varepsilon) > k). \quad (5)$$

where \tilde{R}_B is the Bayes risk for the loss function \tilde{L} .

Setting $\varepsilon = (k/d)(1 - \eta)$, it is possible to show (for instance by Bernstein inequality [BLM13]) that

$$\mathbb{P}\left(\text{Binom}(d, \varepsilon) > k\right) \leq e^{-k\eta^2/4}. \quad (6)$$

Let R_B denote the Bayes risk for the square loss. It is also possible to show that

$$\tilde{R}_B(Q_{M,\varepsilon}) \geq R_B(Q_{M,\varepsilon}) - (M^2 + 1)o_\eta(k), \quad (7)$$

where $o_\eta(k)$ is a quantity such that $\lim_{k \rightarrow \infty} o_\eta(k)/k = 0$ for any $\eta > 0$.

(e) Prove that the above implies implies

$$R_M(d, k; M) \geq d R_B(Q_{M,\varepsilon}) - (M^2 + 1)o_\eta(k). \quad (8)$$

where $R_B(Q_{M,\varepsilon})$ is the Bayes risk for the one-dimensional problem of estimating $\theta \sim q_{M,\varepsilon}$ from $X = \theta + Z$, $Z \sim N(0, 1)$.

Optional

This question will not be graded and is mainly food for thought:

- Continuing from the previous problem, what is the behavior of $R_B(Q_{M,\varepsilon})$ with ε and M ? What are the consequences for $R_M(d, k; M)$? Of particular interest is the regime $\varepsilon \ll 1$ (corresponding to $k \ll d$).

References

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A nonasymptotic theory of independence*. Oxford university press, 2013.