Stat 300A Theory of Statistics

Homework 3
Andrea Montanari Due on October 17, 2018

e Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

e We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

e You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Convex compact parameter space

Let &2 = {Pg : 6 € O} be a statistical model with © C R? a convex compact set, and © is not a singleton
(© contains at least two points). Let ©° = {0 : d(6,0) < e}, where d(0,0) = inf{v € O : ||[v — 0||2}.
Assume the estimator 6 to take values in R? (i.e. the decision space is A = R?).

(a) Consider the case of square loss L(8,0) = ||§—6)|2. Assume that (for some &, > 0) Pg(8(X) & ©°) > §
for all @ € ©. Prove that 6(-) cannot be minimax optimal.

(b) Keeping to the square loss, consider now the linear model Pg = N(D@,0?1,,), where D € R"*? is a
known design matrix, of rank d, and o2 > 0 is known noise variance. Prove that no affine estimator
(i.e. no etimator of the form 8(y) = My + 6y) can be minimax optimal.

(¢) Produce a counter-example showing that the conclusion at point (a) does no longer hold if © is not
convex.

(d) Consider the case d = 1, © = [Omin, Omax), and assume that L is continuous, with a — L(a,0) is
strictly decreasing for a < 6, and strictly increasing for ¢ > 6. Assume that (for some &, > 0)
Po(0(X) & ©°) > 6 for all 0 € ©, and that the risk function 0 — R(6;0) is continuous. Prove that 0
cannot be minimax optimal.

What can you conclude if a — L(a, ) is decreasing (but not necessarily strictly decreasing) for a < 6
and increasing (but not necessarily strictly decreasing) for a > 6.

# 2: On the minimax estimator of a binomial parameter

Let X ~ Py = Binom(n, ), where # € © = [0, 1], and we consider the square loss L(6,0) = (§ — 6)2. Recall
that a minimax estimator is given by

éMM(X)l_?_/E\/ﬁ'f‘Fl_f_l\/ﬁ';' (1)

We know already that this is Bayes optimal with respect to the prior distribution Q = Beta(y/n/2,/n/2).

(a) Consider the case n = 1. Construct a two points prior Q = ¢dgp, + (1 — ¢)dp, whose Bayes optimal
estimator coincides with 6y;.
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(b) Show that, for any n, there exists a prior supported on m number of points for some integer m, whose
Bayes estimators coincides with Oyy.

[You can assume that the linear system Y . ¢;(i/m)* = [0*Q(d§), k € {0,...,n + 1} has a solution
a=(q0,---,qm) > 0 for m large enough. (Here Q = Beta(f/? f/2))]

# 3: Minimax estimation of sparse vectors

Let © C R? and consider estimation with a loss L : AXR? — Rx( upper bounded by Lo: SUP,e 4 0co L(a,0) <
Lo.

(a) Prove that, for any probability distribution Q on R?,
Ru(©) > Rs(Q) — Lo Q(O°), (2)

where Q(©°) f@L Q(d0) is the probability of ©¢ under Q, and R;(Q) = fRd R(A;0)Q(df). (Here we
assume that Py is not only defined for @ € ©, but for any § € R%.)

Given two integers 1 < k < d, and a real number M > 0, define the set of vectors
o(d, k; M) = {0 € {0,+M, ~M}: |16]o < k} (3)

where ||@]lo = |supp(0)] is the number of non-zero entries in 8. We we are interested in the minimax error
for the Gaussian location model with this parameters space & = {Pg : 0 € ©(d, k; M)}, action space R,
and square loss L(6,0) = || — 6||3. We will denote this minimax risk by Ry(d, k; M).

(b) Prove that, in determining the minimax error, we can restrict ourselves to estimators that take values
in A = BY0O; MVE) = {68 € R : ||0||» < MVk}. Further, we can replace the square loss by
L(6,6) = min(||0 — 0||3; 4M3k)

(¢) Prove that there exists a least favorable prior Q., and that it can be taken of the form

k
Q. = Z peQy (4)
=0

where p = (pe)o<s<k is a probability distribution over {0,1,...,k}, and Q, is the uniform distribution
over vectors in 6 € O(d, k; M) with ||0]]o = ¢.

[Hint: Note that this claim is equivalent to Q.({01}) = Q.({62}), for any 01,05 € O(d, k; M) with
1610 = [162[0-]

Computing the Bayes risk for the prior Q. described above is somewhat intricate. We thus consider a
simpler prior Q. Under Q. the coordinates of 6 are independent with Qar-({6; = M}) = Qu({6; =
—M}) =¢/2, and Qu ({6 =0}) =1 — . Equivalently Qare = qare X -+ X qar,e, Where qazc is the three
points distribution qar. = (1 —€)do + (€/2)dnr + (€/2)0_ps.

(d) Prove that
Ru(d, k; M) > Ro(Qare) — 4M2kP(Bin0m(d, £) > k:) . (5)

where Ry, is the Bayes risk for the loss function L.



Setting € = (k/d)(1 — ), it is possible to show (for instance by Bernstein inequality [BLM13]) that
P(Binom(d, g) > k) < e k4 (6)
Let Ry denote the Bayes risk for the square loss. It is also possible to show that
Ra(Qure) 2 Ra(Qure) = (M + 1) 0y(k), (7)

where o, (k) is a quantity such that limy_, 0,(k)/k = 0 for any n > 0.

(e) Prove that the above implies implies
Ry(d,k; M) > d Ry(qur,e) — (M? + 1)o, (k) . (8)
where Ry(qare) is the Bayes risk for the one-dimensional problem of estimating 6 ~ qar from X =
0+ Z,Z ~N(0,1).
Optional
This question will not be graded and is mainly food for thought:

e Continuing from te previous problem, what is the behavior of Rg(qas,e) with € and M? What are the
consequences for Ry (d, k; M)? Of particular interest is the regime ¢ < 1 (corresponding to k < d).

References

[BLM13] Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.



	

