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Problem 1

(a)

Define a projector operator to be the following:

Proj(θ) =

{
θ, if θ ∈ Θε,

arg minθ′∈Θ ‖θ − θ′‖22, if θ 6∈ Θε.

Since Θ is a convex compact set, the minimizer arg minθ′∈Θ ‖θ−θ′‖22 is unique, so that Proj operator is well
defined.

Given an estimator θ̂ : X → Rd such that Pθ(θ̂(X) 6∈ Θε) > δ, we take θ̃ = Proj(θ̂). Then for any
θ ∈ Θ, we have

‖θ̃(x)− θ‖22 ≤ ‖θ̂(x)− θ‖22 − η1{θ̂(x) 6∈ Θε},

where
η = min

θ∈Θ,θ′∈∂Θε
‖θ′ − θ‖22 − ‖Proj(θ′)− θ‖22.

Since Θ is a convex compact set, and ∂Θε is a compact set, we have η > 0.
As a result, we have for any θ ∈ Θ,

Eθ[‖θ̃(X)− θ‖22] ≤ Eθ[‖θ̂(X)− θ‖22]− ηPθ(θ̂(X) 6∈ Θε) ≤ Eθ[‖θ̂(X)− θ‖22]− ηδ,

and
sup
θ∈Θ

Eθ[‖θ̃(X)− θ‖22] ≤ sup
θ∈Θ

Eθ[‖θ̂(X)− θ‖22]− ηδ.

That means θ̃ has strictly better worst risk than θ̂, so that θ̂ is not minimax optimal on Θ.

(b)

First we consider the case when M 6= 0. Since Θ is a compact convex set, we take R large enough so

that Θε ⊆ B(0, R) for some small ε > 0. The estimator θ̂(y) = My + θ0
d
= MDθ + θ0 + σMg, where

g ∼ N (0, In). Note σMg is not identically 0 when M 6= 0, and Θ is a compact set, we have

inf
θ∈Θ

Pθ(‖MDy + θ0‖2 ≥ R) ≡ δ > 0.

By problem (a), we conclude that θ̂ cannot be minimax optimal on Θ.

Remark 1. To show θ̂ = θ0 is not minimax optimal, we need to make the additional assumption that
D ∈ Rn×d has full column rank, otherwise this conclusion doesn’t hold. In the following, we prove this
conclusion under this additional assumption.
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Then we consider the case when M = 0. That means, θ̂ = θ0. If θ0 6∈ Θ, it is obvious θ̂ is not minimax
optimal on Θ. Hence we consider the case when θ̂ = θ0 ∈ Θ.

We claim that the θ̂ = θ0 cannot be the Bayes estimator for any prior except the prior δ(θ0). Suppose

this claim holds, the Bayes risk RB(θ̂, δ(θ0)) = 0. Since Θ contains at least two points, it is easy to see that
the minimax risk should be large than 0, hence δ(θ0) is not the least favorable prior. By minimax theorem,

the minimax estimator should be the Bayes estimator for least favorable prior. Therefore, θ̂ = θ0 cannot be
the minimax estimator.

Now suffice to show the claim above. Suppose Q is a prior probability distribution on Θ and Q(Θ \
{θ0}) > 0, then the Bayes estimator under prior Q and square loss should be the posterior expectation

θ̂Q(x) = EQ[θ|x]. We would like to show EQ[θ|x] 6≡ θ0. The intuition why EQ[θ|x] 6≡ θ0 can be explained
by the following: when ‖x‖2 → ∞, the posterior expectation EQ[θ|x] should be at the boundary of the
support of Q. In the following we show the above intuition rigorously.

By the fact that Q(Θ \ {θ0}) > 0, there exists a neighborhood B(θ?, δ) such that Q(B(θ?, δ)) ≡ η >
0 and ‖θ? − θ0‖2 ≥ 2δ. Now we take xk = D[θ0 + k(θ? − θ0)], then we have (denoting ϕn(x) =
(1/(2π)n/2) exp{−‖x‖22/2} to be the standard Gaussian density function on Rn)

〈EQ[θ|xk]− θ0,θ? − θ0〉 =

∫
Θ
〈θ − θ0,θ? − θ0〉ϕn(D(θ0 − θ + k(θ? − θ0))/σ)Q(dθ)∫

Θ
ϕn(D(θ0 − θ + k(θ? − θ0))/σ)Q(dθ)

.

The integration in the numerator above can be decomposed into the integration in B(θ?, δ) and the integration
outside B(θ?, δ), ∫

Θ

〈θ − θ0,θ? − θ0〉ϕn(D(θ0 − θ + k(θ? − θ0))/σ)Q(dθ)

≥‖θ? − θ0‖2(‖θ? − θ0‖ − δ)
1

(2πσ2)n/2
exp{−‖D[k(θ? − θ0)− u]‖22/(2σ2)}η

− ‖θ? − θ0‖2Diam(Θ)
1

(2πσ2)n/2
exp{−‖kD(θ? − θ0)‖22/(2σ2)}(1− η),

where Diam(Θ) gives the diameter of Θ, and u = [(‖θ? − θ0‖2 − δ)/‖θ? − θ0‖2](θ? − θ0). Note (we already
assumed D has full column rank)

lim
k→∞

exp{−‖D[k(θ? − θ0)− u]‖22/(2σ2)}
exp{−‖kD(θ? − θ0)‖22/(2σ2)}

=∞,

hence for large k, we have
〈EQ[θ|xk]− θ0,θ? − θ0〉 > 0.

That means, we have EQ[θ|xk] 6= θ0 for large k. This proves the claim.

(c)

Let Θ = {−1, 1}, P1 = P0 = δ(0) (no matter what θ is, the data X is deterministically 0). Hence we only
need to consider the estimator that is a constant mapping (Rao-Blackwell theorem tells us that we don’t

need to consider randomized estimator). The risk function for any constant estimator is R(θ̂ = a; Θ) =

sup{(1 − a)2, (−1 − a)2}. Minimizing this over a, the minimax estimator is θ̂ = 0. For this estimator, for

ε < 1/4, P0(θ̂ 6∈ {−1, 1}ε) = P1(θ̂ 6∈ {−1, 1}ε) = 1.

(d)

Consider the estimator θ̃ = Proj(θ̂), where Proj operator enjoy the same definition of Problem (a), then we
have

L(θ̃(x), θ) ≤ L(θ̂(x), θ)− η1{θ̂(x) 6∈ Θε},

where
η = min

θ∈Θ,θ′∈∂Θε
L(θ′, θ)− L(Proj(θ′), θ).
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Since L is strictly decreasing for a < θ and strictly increasing for a > θ, and Θ and ∂Θε are compact sets,
we have η > 0.

As a result, we have for any θ ∈ Θ,

R(θ̃, θ) = Eθ[L(θ̃(X), θ)] ≤ Eθ[L(θ̂(X), θ)]− ηPθ(θ̂(X) 6∈ Θε) ≤ R(θ̂, θ)− ηδ.

Since R(θ̂, θ) is continuous in θ, R(θ̂, θ) can attain the maximum, and we have

sup
θ∈Θ

R(θ̃, θ) ≤ sup
θ∈Θ

R(θ̂, θ)− ηδ.

That means θ̂ is not minimax optimal on Θ.
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Problem 2

(a)

Let θ1 = 1/2 − 1/(2
√

2), θ2 = 1/2 + 1/(2
√

2), and let q = 1/2. Under the square loss, the Bayes optimal
estimator for Q is given by the conditional expectation

θ̂B(x) = E[θ|X = x]

=

{
θ21+θ22
θ1+θ2

if x = 1
θ1(1−θ1)+θ2(1−θ2)

1−θ1+1−θ2 if x = 0

=

{
3
4 if x = 1
1
4 if x = 0

=
x

2
+

1

4
.

(1)

The above implies that θ̂B(Q) = θ̂MM .

(b)

As suggested in the hint, there exists an integer m, such that choosing qi ≥ 0 for i = 0, 1, · · · ,m such that
(here Q is the measure induced by a Beta(

√
n/2,

√
n/2) random variable)

m∑
i=0

qi

(
i

m

)k
=

∫
θkQ(dθ) for all k = 0, 1, · · ·n+ 1. (2)

Then the above implies that, for any polynomial p of degree at most n+ 1, we have
m∑
i=0

qip

(
i

m

)
=

∫
p(θ)Q(dθ). (3)

Consider the prior distribution:

Q1 =

n+1∑
i=0

qiδ

(
i

m

)
(4)

The Bayes optimal estimator is given by the conditional expectation

θ̂Q1
(X) = EQ2

[θ|X]

=

∑n+1
i=0 qi(i/m)X+1(1− i/m)n−X∑n+1
i=0 qi(i/m)X(1− i/m)n−X

.
(5)

On the other hand, the Bayes estimator with respect to Beta(
√
n/2,

√
n/2) is given by

θ̂MM (X) =

√
n

1 +
√
n
· X
n

+
1

1 +
√
n
· 1

2

= EQ[θ|X]

=

∫
θX+1(1− θ)n−XQ(dθ)∫
θX(1− θ)n−XQ(dθ)

.

(6)

Let p1(t;X) = tX+1(1− t)n−X , p2(t;X) = tX(1− t)n−X , then it clear that both p1 and p2 as a function of
t are polynomial of degree at most n+ 1. Hence by (3) we have

θ̂Q1
(X) =

∑m
i=0 p1

(
i
m , X

)
qi∑m

i=0 p2

(
i
m , X

)
qi

=

∫
p1(θ,X)Q(dθ)∫
p2(θ,X)Q(dθ)

= θ̂MM (X). (7)

Therefore,

θ̂Q1
(X) = θ̂MM (X) =

√
n

1 +
√
n
· X
n

+
1

1 +
√
n
· 1

2
. (8)
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Problem 3

(a)

Since L is upper bounded by L0, R(A,θ) is also bounded from above by L0 for all A ∈ A and θ ∈ Θ. Given
Q, for any statistical procedure A, we have

R(A,Q) =

∫
Rd
R(A,θ)Q(dθ) =

∫
Θ

R(A,θ)Q(dθ) +

∫
Θc
R(A,θ)Q(dθ)

≤ sup
θ∈Θ

R(A,θ) + L0Q(Θc).
(9)

Hence
RB(Q)− L0Q(Θc) ≤ R(A,Q)− L0Q(Θc) ≤ sup

θ∈Θ
R(A,θ). (10)

Since the above is true for all A, taking the infimum over A ∈ A gives

RM (Θ) ≥ RB(Q)− L0Q(Θc). (11)

(b)

Let θ̂ be any estimator, and let θ̃ be the projection of θ̂ onto Bd(0,M
√
k). That is

θ̃ = min

{
M
√
k

‖θ̂‖2
, 1

}
θ̂. (12)

Then it is clear that L(θ̃,θ) ≤ L(θ̂,θ) with probability 1 for all θ ∈ Θ(d, k,M) ⊂ Bd(0,M
√
k). Since

θ̃ ∈ Bd(0,M
√
k), it is sufficient to only consider estimators taking values in Bd(0,M

√
k). In this case, since

both θ̃ and θ are in a ball with radius M
√
k, there distance square is upper bounded by the diameter square

of the ball. That is, for all θ ∈ Θ and θ̃ in the above form, we have

L(θ̃,θ) ≤ 4M2k. (13)

Therefore it is also sufficient to replace the square loss by L̃(θ̂,θ) = min{‖θ̂ − θ‖22, 4M2k}.

(c)

Let G = Πd × Σd be a group, where Πd is the permutation group on {1, . . . , d}, and Σd = {+1,−1}d is
the sign changing group. For any g = [π,σ] ∈ G (π is a permutation, where {π(1), . . . , π(d)} = {1, . . . , d}
as a set; σ = [σ1, . . . , σd]

T ∈ {+1,−1}d), the action of ϕg on x = (x1, . . . , xd)
T ∈ Rd gives ϕg(x) =

(σ1xπ(1), . . . σdxπ(d))
T. We would like to show our statistical model is invariant under this group. First

we have L(a,θ) = ‖a − θ‖22 = ‖ϕg(a) − ϕg(θ)‖22 = L(ϕg(a), ϕg(θ)). Next we have Pg(θ)(X ∈ S) =
PZ∼N (0,σ2Id)(ϕg(θ) + Z ∈ S) = PZ∼N (0,σ2Id)(ϕg(θ) + ϕg(Z) ∈ S) = PZ∼N (0,σ2Id)(ϕg(θ + Z) ∈ S) =
Pθ(ϕg(X) ∈ S) = (ϕg)#Pθ(X ∈ S). Hence our model is invariant under this group. Since minimax theorem
holds for this model, there exists a least favorable prior. According to invariant least favorable prior theorem,
there exists a least favorable prior that is invariant under the group action. This invariant least favorable
prior can only be written in the form Q =

∑k
`=0 p`Q`.

(d)

By part (b) we know that RM (d, k;M) = R̃M (d, k;M), and we can replace the loss L by L̃, which is bounded
from above by 4M2k. By part (a) we have

RM (d, k;M) = R̃M (d, k;M) ≥ R̃B(QM,ε)− 4M2kQM,ε(Θ
c). (14)

Let X ∈ Rd be a random variable whose induced measure is QM,ε, then it is clear that QM,ε(Θ
c) is equal

to P(‖X‖0 > k). Since the coordinates of X are independent and 1(Xi 6= 0) has Bernoulli(ε) distribution,
‖X‖0 has Binomial(d, ε) distribution. Therefore, (14) becomes

RM (d, k;M) ≥ R̃B(QM,ε)− 4M2kP(Binom(d, ε) > k). (15)
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(e)

Note θ = (θ1, . . . , θd) ∼ QM,ε = q⊗dM,ε, and X ∼ N (θ, σ2Id). We have (Xi, θi) for i ∈ [d] are mutually
independent. Hence the Bayes estimator which is the posterior mean gives

(θ̂B(x))j = E[θj |X = x] = E[θj |Xj = xj ].

Hence

RB(QM,ε) = EQM,ε [‖θ̂B − θ‖22]

=
∑
j∈[d]

EQM,ε [((θ̂B)j − θj)2]

=
∑
j∈[d]

EQM,ε [(E(θj |Xj)− θj)2]

=
∑
j∈[d]

EqM,ε [(E(θj |Xj)− θj)2]

= dRB(qM,ε).

(16)

Since we have
P (Binom(d, ε) > k) ≤ e−kη

2/4, (17)

which implies that kP (Binom(d, ε) > k) = oη(k), using (15), (16) and (7) in the question gives

RM (d, k;M) ≥ dRB(qM,ε)− (M2 + 1)oη(k)− 4M2oη(k). (18)

Since a constant times oη(k) is still oη(k), the −4M2oη(k) above can be merged with the first M2oη(k), so
it can be simplifies to

RM (d, k;M) ≥ dRB(qM,ε)− (M2 + 1)oη(k). (19)
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