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Problem 1
(a)

Define a projector operator to be the following:

0, if 0 € ©°,

Proj(0) =
I‘OJ( ) {argmine,eg ”0_6/”%7 if O ¢@E

Since © is a convex compact set, the minimizer arg ming ¢ ||@ — €’||3 is unique, so that Proj operator is well
defined. R . - .
Given an estimator 6 : X — RY such that Pg(8(X) & ©°) > 4, we take § = Proj(0). Then for any
6 € O, we have 3 . .
16(z) - 613 < [|8(z) — 0[5 — n1{6(z) & O°},
where
= i 0’ — 0|2 — ||Proj(@') — 6|2
M= peduin . | 2 — [[Proj(8) — 6|3
Since O is a convex compact set, and 9O°¢ is a compact set, we have n > 0.
As a result, we have for any 0 € ©,

Eo[Il0(X) — 0][3) < Eo[|0(X) — 0]I3] — 1Pe(0(X) & ©%) < Eq[[0(X) — 6]3] - nd,

and
sup Eg[[|6(X) — 6]|3] < sup E¢[[|6(X) — 6]|5] — nd.
0co 0co

That means 6 has strictly better worst risk than é, so that € is not minimax optimal on ©.

(b)
First we consider the case when M # 0. Since © is a compact convex set, we take R large enough so

that ©¢ C B(0, R) for some small ¢ > 0. The estimator (y) = My + 6, < MDO + 6, + ocMg, where
g ~ N(0,1,,). Note 0 Mg is not identically 0 when M ## 0, and © is a compact set, we have

i > = .
f;lfel(f9 Po(|MDy +6ll2 > R) =6 >0

By problem (a), we conclude that § cannot be minimax optimal on ©.

Remark 1. To show 6 = 0y is not minimazx optimal, we need to make the additional assumption that
D € R has full column rank, otherwise this conclusion doesn’t hold. In the following, we prove this
conclusion under this additional assumption.



Then we consider the case when M = 0. That means, 0 =6,. If 6, ¢ O, it is obvious 6 is not minimax
optimal on ©. Hence we consider the case when 0=0,c0.

We claim that the 8 = 6y cannot be the Bayes estimator for any prior except the prior 6(6y). Suppose
this claim holds, the Bayes risk Rp(8,(6y)) = 0. Since © contains at least two points, it is easy to see that
the minimax risk should be large than 0, hence §(6y) is not the least favorable prior. By minimax theorem,
the minimax estimator should be the Bayes estimator for least favorable prior. Therefore, 6 = 6, cannot be
the minimax estimator.

Now suffice to show the claim above. Suppose @ is a prior probability distribution on © and Q(© \
{6p}) > 0, then the Bayes estimator under prior Q and square loss should be the posterior expectation
6 (z) = Eg[0|x]. We would like to show Eg[0|x] # 8. The intuition why Eg[@|x] # 8y can be explained
by the following: when ||z||2 — oo, the posterior expectation Eg[@|z] should be at the boundary of the
support of Q. In the following we show the above intuition rigorously.

By the fact that Q(O \ {6p}) > 0, there exists a neighborhood B(6,,d) such that Q(B(0,,0)) =
0 and ||0, — 6pll2 > 20. Now we take &, = DI[Oy + k(6. — 6p)], then we have (denoting ¢, (x
(1/(27)"/?) exp{—||x|3/2} to be the standard Gaussian density function on R™)

Jo (0 — 60,0, — 00)0,(D(6) — 0 + k(6. — 6;))/0)Q(d)
f@ SDH(D(QO -0+ k(G* - 00))/0)Q(d9)

The integration in the numerator above can be decomposed into the integration in B(6,, §) and the integration
outside B(6y,9),

U
)

v

(Eq[O|xk] — 00,0, — 6) =

LL@—Gm&—BM%UX%—0+M&fﬂwV®Q@®

216, — Bolla(10. 80l — 8) o7z exp{ - DIk(6. — ) — wl /(20

W exp{—[kD(6, — 69)|I3/(20)} (1 —n),

where Diam(©) gives the diameter of ©, and u = [(||6. — 0|2 — 9)/]|0x — Ol|2](8x — Op). Note (we already
assumed D has full column rank)

— |0, — 0p]|2Diam(©)

i EP{=DIEO, — 60) —ull3/(20°)}
k—oo  exp{—|kD (0« — 6o)|3/(202)} 7

hence for large k, we have
(Eq[O|xk] — 00,0, — 6o) > 0.

That means, we have Eg[@|z)] # 0y for large k. This proves the claim.

(c)

Let © = {—1,1}, Py = Pg = §(0) (no matter what 6 is, the data X is deterministically 0). Hence we only
need to consider the estimator that is a constant mapping (Rao-Blackwell theorem tells us that we don’t
need to consider randomized estimator). The risk function for any constant estimator is R(6 = a;0) =
sup{(1 — a)?, (=1 — a)?}. Minimizing this over a, the minimax estimator is § = 0. For this estimator, for

e<1/4,Po(0 ¢ {-1,1}°) =P1(d ¢ {-1,1}°) = 1.

(d)

Consider the estimator = Proj(#), where Proj operator enjoy the same definition of Problem (a), then we
have
L(0(x),0) < L(6(x),0) — n1{0(x) & ©°},

where

= i L(0'.0) — L(Proj(6'). 0).
T pee orcoor (0",60) — L(Proj(6"), 0)



Since L is strictly decreasing for a < 6 and strictly increasing for a > 6, and © and 0©° are compact sets,
we have n > 0.
As a result, we have for any 0 € ©,

R(éa 0) = EG[L(é(X)’ 0)] < EG[L(é(X)7 0)] — nPO(é(X) ¢0O°) < R(é,@) —7no.

Since R(é, ) is continuous in 6, R(é, 0) can attain the maximum, and we have

sup R(0,0) < sup R(6,0) — né.
S 0coO

That means  is not minimax optimal on ©.



Problem 2
(a)

Let 0; = 1/2 —1/(2v/2), 02 = 1/2 4+ 1/(2v/2), and let ¢ = 1/2. Under the square loss, the Bayes optimal
estimator for () is given by the conditional expectation

0p(x) = E[A|X = x]

02462 .
e 47!
! 1_51+12_92 = ifx=0 ,
_J3 ifz=1 W)
i ifx=0
_r_ 1
24
The above implies that 05 Q) = Onsar-
(b)
As suggested in the hint, there exists an integer m, such that choosing ¢; > 0 for ¢ = 0,1,--- ,m such that
(here @ is the measure induced by a Beta(y/n/2,/n/2) random variable)
m N
ZQi (Z) :/QkQ(dH) forall k=0,1,---n+ 1. (2)
m
i=0

Then the above implies that, for any polynomial p of degree at most n + 1, we have

o i
> an (L) = [ o). Q
i=0 m
Consider the prior distribution:
n+1 .
i
Q= ;%5 (m) (4)
The Bayes optimal estimator is given by the conditional expectation
6. (X) = Eq,[0/X]
S @i/m)¥ (1 —i/m)n X (5)
ity aii/m)X (1 —i/m)n=X
On the other hand, the Bayes estimator with respect to Beta(y/n/2,/n/2) is given by
_ WA X, 11
1+ on 14+yn 2
= Egl0)X] (6)
00X Qan)
o [OX1-0)nXQ(d9)
Let pi(t; X) = tXT1(1 — )" =X po(t; X) = tX(1 — t)"=X, then it clear that both p; and p, as a function of
t are polynomial of degree at most n + 1. Hence by (3) we have

Srort (. X) (0, X)Q(dB)

Onrne (X)

Go. (X) = S i) = D (0 )
Therefore,
9Q1<X>=éMM<X>=lfﬁf+1jﬁ; (3)

S



Problem 3
(a)

Since L is upper bounded by Lo, R(A4, 0) is also bounded from above by L for all A € A and 8 € ©. Given
Q, for any statistical procedure A, we have

R(4,Q) = [ R(4.6)Q(0) = [ R(A.0)Q(8) + [ R(A.0)Q(8)
R4 e e° (9)
< sup R(A,0) + LoQ(6°).
6co
Hence
Rp(Q) — LoQ(O°) < R(A,Q) — LoQ(0°) < Sup R(A,0). (10)
€

Since the above is true for all A, taking the infimum over A € A gives

Ru(0) = Rp(Q) — LoQ(O°). (11)

(b)

Let 6 be any estimator, and let 6 be the projection of 6 onto B(0, M\/E) That is

~ MVE .

0:min{f71}9. (12)
16112

Then it is clear that L(0,0) < L(6,0) with probability 1 for all 8 € ©(d,k, M) C B40,Mvk). Since

0 € B4(0, MV/k), it is sufficient to only consider estimators taking values in B¢(0, M+/k). In this case, since

both 6 and @ are in a ball with radius M V'k, there distance square is upper bounded by the diameter square
of the ball. That is, for all @ € © and @ in the above form, we have

L(0,0) < 4M?k. (13)
Therefore it is also sufficient to replace the square loss by L(6, 8) = min{||0 — 6|2, 4M2k}.

(c)

Let G = Il x ¥4 be a group, where Il is the permutation group on {1,...,d}, and ¥4 = {+1,—1}% is
the sign changing group. For any g = [7,0] € G (7 is a permutation, where {n(1),...,7(d)} = {1,...,d}
as a set; o = [01,...,04)7 € {+1,—1}%), the action of ¢, on = = (z1,...,24)7 € R? gives py(x) =
(01Zx(1), - ..odxw(d))T. We would like to show our statistical model is invariant under this group. First
we have L(a,0) — la — 83 = ,(a) — ¢, (O)3 = L(y(a),4(6)). Next we have Pyg)(X € §) =
P2n0.0o1) (25(0) + Z € 8) = Prnioomin(@9(8) + 94(Z) € 8) = Prniowmn(ps(® + Z) € S) =
Po(pg(X) € S) = (pg)#Pa(X € 5). Hence our model is invariant under this group. Since minimax theorem
holds for this model, there exists a least favorable prior. According to invariant least favorable prior theorem,
there exists a least favorable prior that is invariant under the group action. This invariant least favorable
prior can only be written in the form @ = Z?:o PeQy.

(d)

By part (b) we know that Ry (d, k; M) = Ras(d, k; M), and we can replace the loss L by L, which is bounded
from above by 4M?k. By part (a) we have

Rar(d, ks M) = Ras(d, k; M) > Rp(Qare) — 4AM?kQ . (0°). (14)

Let X € R? be a random variable whose induced measure is Q M,e, then it is clear that Qas(©°) is equal
to P(]| X |lo > k). Since the coordinates of X are independent and 1(X; # 0) has Bernoulli(e) distribution,
I Xlo has Binomial(d, €) distribution. Therefore, (14) becomes

Rur(d, k; M) > Rp(Qar.e) — 4M?kP(Binom(d, €) > k). (15)



(e)

Note 8 = (61,...,04) ~ Qume = q%‘fe, and X ~ N(0,0%1;). We have (X;,0;) for i € [d] are mutually

independent. Hence the Bayes estimator which is the posterior mean gives

(05(x)); = E[0;|X = ] = E[0;|X; = z;].

Hence
Rp(Que) = Eq,, (|05 — 0]2]

=Y Eq,. [((85); — 0;)?]
JEd]

=" g, [(E(8;]X;) — 0,))
j€ld]

= Eq [(E(0]X;) — 0;)7]
N

= dRB(qnm,e)-

Since we have )
P(Binom(d, €) > k) < e k7 /4,

which implies that kP (Binom(d, €) > k) = 0,(k), using (15), (16) and (7) in the question gives

Ra(d, k; M) > dRp(qu,e) — (M? + 1)o, (k) — 4M?0, (k).

(17)

(18)

Since a constant times o, (k) is still o,(k), the —4M?0, (k) above can be merged with the first M?o, (k), so

it can be simplifies to
Ra(d, k; M) > dRg(qare) — (M? + 1)o, (k).

(19)



