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Suyash Gupta Homework 4 solutions

#1: Small noise limit in the bounded normal mean model

Solution.

(a) The estimator X has a constant risk function σ2. So,

R(Θ;σ2) ≤ σ2 . (1)

(b) We use choice 1. Under the given prior, the posterior distribution θ|x has a truncated Normal
Distribution. Precisely speaking,

θ|X ∼ Y | − 1 < Y < 1

where Y ∼ N(X, σ2)

From wiki, the mean of the posterior distribution is given by

X + σ
ϕ(−1−X

σ
)− ϕ(1−X

σ
)

Φ(1−X
σ

)− Φ(−1−X
σ

)

which is the required Bayes estimator.

Now,

1

σ2
R(Qσ) = E

(
X − θ
σ

+
ϕ(−1−X

σ
)− ϕ(1−X

σ
)

Φ(1−X
σ

)− Φ(−1−X
σ

)

)2

Take Z = X−θ
σ

.

1

σ2
R(Qσ) = E

(
Z +

ϕ(−1−θ
σ
− Z)− ϕ(1−θ

σ
− Z)

Φ(1−θ
σ
− Z)− Φ(−1−θ

σ
− Z)

)2
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lim inf
σ→0

1

σ2
R(Qσ)

= lim inf
σ→0

E

(
Z +

ϕ(−1−θ
σ
− Z)− ϕ(1−θ

σ
− Z)

Φ(1−θ
σ
− Z)− Φ(−1−θ

σ
− Z)

)2

≥ E lim inf
σ→0

(
Z +

ϕ(−1−θ
σ
− Z)− ϕ(1−θ

σ
− Z)

Φ(1−θ
σ
− Z)− Φ(−1−θ

σ
− Z)

)2

= EZ2 = 1

where the last inequality is by Fatou’s lemma and the last equality is by continuity of Normal
density and distribution function.

(c) From part (a),

lim sup
σ→0

1

σ2
R(Qσ) ≤ 1

Hence, combining with b). we have the result.
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#2: A modified James–Stein Estimator

Solution.

(a) Here g(x) = θ̂(x)− x = −(x− x̄1)h(||x− x̄||2). So,

R(θ̂, θ) = E(||θ̂ − θ||2)

= d+ E(||g(x)||2) + 2E(div(g(x)))

Let f(x) = ||x− x̄1||2, so div(g(x) = −(d− 1)h(f)− 2fh′(f).

So,

R(θ̂, θ) = d+ E[fh(f)2 − 2(d− 1)h(f) + 2fh′(f)]

(b) Plugging in the required values of h and h′, we get,

R(θ̂, θ) = d+ (C2 − 2dC + 6C)E( 1
f
)

(c) We want C2 − 2dC + 6C = C(C − 2d + 6) < 0. If d ≥ 3, then taking C ∈ (0.2d − 6) gives
the strict inequality.

(d) Consider the model where θi are i.i.d. samples fromN(µ, σ2), andXi|θi ∼ N(θi, 1). Following
the empirical Bayes procedure, we estimate µ, σ2 using moment method. The marginal
distribution of Xi is N(µ, 1 + σ2), so µ̂ = X̄ and σ̂2 = ||X − X̄||2/C − 1.

For squared error loss, Bayes estimate is

ˆθBayes(x) =
µ

1 + σ2
1 +

σ2

1 + σ2
X

Plugging in the estimates for µ̂ and σ̂2, we have that ˆθBayes(x) is actually the modified James
Stein estimator.

Page 3 of 6



Suyash Gupta Homework 4 solutions

#3: A regression problem with random designs

Solution. Thanks to Zi Yang Kang for solution to Problem 3

(a) Let θ̂ be a minimax estimator. Suppose that for given data (y,X), dist(θ̂(y,X); Θ) > 1,
where dist(x;S) = inf{||x− s ||2 : s ∈ S}. Then consider the procedure θ̃ defined by

θ̃(y,X) =

{
θ̂(y,X) for dist(θ̂(y,X); Θ) ≤ 1,

0 for dist(θ̂(y,X); Θ) > 1.

Observe that

|| θ̃(y,x)− θ ||22 =

{
|| θ̂(y,X)− θ ||22 for dist(θ̂(y,X); Θ) ≤ 1,

1 for dist(θ̂(y,X); Θ) > 1.

Consequently, R(θ̃;θ) ≤ R(θ̂;θ) for every θ ∈ Θ; hence, if θ̂ is minimax optimal, then θ̃ is
minimax also. Therefore, to construct a minimax estimator θ̂, it suffices to consider θ̂ such
that dist(θ̂(y,X); Θ) ≤ 1. Equivalently, it suffices to consider θ̂ such that im(θ̂) ⊆ Bd(2),
the d-dimensional closed ball with radius 2.

(b) By part (a), we may assume without loss of generality that the action space A = Bd(2).
Since A and Θ are compact and L is continuous, the minimax theorem applies; hence a least
favorable prior Q∗ ∈M1(Θ) exists.

Consider the d-dimensional orthogonal group, O(d), endowed with its rotation action on Θ

and A (i.e., ϕQ : v 7→ Qv for Q ∈ O(d) and v ∈ Θ,A) and its anti-rotation action on X
(i.e., ϕQ : x 7→ Q>x for Q ∈ O(d) for x ∈ X ). We claim that the model is invariant under
O(d). Indeed, observe that

(ϕQ)#Pθ{(y,X) ∈ S} = (ϕQ)#Pθ{((y1,x1), (y2,x2), . . . , (yn,xn)) ∈ S}

= Pθ{((y1, Q>x1), (y2, Q
>x2), . . . , (yn, Q

>xn)) ∈ S}

= PQθ{((y1,x1), (y2,x2), . . . , (yn,xn)) ∈ S} = PϕQ(θ){(y,X) ∈ S}.

Moreover, for all a ∈ A, θ ∈ Θ and Q ∈ O(d),

||ϕQ(a)− ϕQ(θ) ||22 = ||Qa−Qθ ||22 = ||a− θ ||22.
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Therefore the model is invariant under O(d). Since O(d) is compact and there exists a least
favorable prior Q∗, hence there exists a least favorable prior Q∗ that is invariant under the
action ϕQ : θ 7→ Qθ on Θ. This means that (ϕQ)#Q∗ = Q∗ for every Q ∈ O(d). The only
Q∗ ∈M1(Θ) satisfying this is the uniform prior.

We thus conclude that a least favorable prior Q∗ is the uniform prior on Θ, such that
Q∗({θ1}) = Q∗({θ2}) for any θ1,θ2 ∈ Θ.

(c) As justified in part (b), the minimax theorem applies; therefore, the minimax estimator is
the Bayes estimator with respect to the least favorable prior Q∗ = Qunif .

Under square loss, the Bayes (and minimax) estimator θ̂M is given by

θ̂M(y,X) = E{θ |y,X}.

Here, the expectation is taken conditional on the data (y,X), with respect to the
(unconditional) measure Q∗ = Qunif on Θ.

(d) We compute that

Eθ || θ̂(y,X)− θ ||22 = 1− 2

C(n)

n∑
i=1

Eθ 〈yixi,θ〉+
1

[C(n)]2
Eθ

{
n∑
i=1

|| yixi ||22

}
.

Independence of wk and xk implies that, for any distinct i, j ∈ {1, 2, . . . , d},

Eθ 〈yixi, yjxj〉 = Eθ

〈
xix

>
i θ + wixi,xjx

>
j θ + wjxj

〉
= Eθ

{
θ>xix

>
i xjx

>
j θ
}

= Eθ

{
θ21x

2
i,1x

2
j,1 + θ22x

2
i,2x

2
j,2 + · · ·+ θ2dx

2
i,dx

2
j,d

}
= 1.

Similarly,

Eθ || yixi ||22 = Eθ

{
θ>xix

>
i xix

>
i θ + w2

ix
>
i xi
}

= Eθ

{(
θ21x

2
i,1 + θ22x

2
i,2 + · · ·+ θ2dx

2
i,d

) (
x2i,1 + x2i,2 + · · ·+ x2i,d

)}
+ σ2 Eθ ||xi ||22

= d+ 2 + σ2d.
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On the other hand,

Eθ 〈yixi,θ〉 = Eθ

〈
xix

>
i θ + wixi,θ

〉
= Eθ

{
θ21x

2
i,1 + θ22x

2
i,2 + · · ·+ θ2dx

2
i,d

}
= 1.

Combining our above computations yields

Eθ || θ̂(y,X)− θ ||22 = 1− 2n

C(n)
+
n (d+ 2 + σ2d) + n (n− 1)

[C(n)]2

Simplifying:

R(θ̂;θ) = 1− n · 2C(n)− n− d− σ2d− 1

[C(n)]2
.

We wish to minimize R(θ̂;θ). We adopt the following approach. Consider the maximization
problem:

max
z∈R

2z − n− d− σ2d− 1

z2
.

Using elementary calculus, we find that the solution z∗ must satisfy

2z2∗ − 2z∗
(
2z∗ − n− d− σ2d− 1

)
= 0 =⇒ 2z∗

(
n+ d+ σ2 + 1− z∗

)
= 0.

Observe that
2z − n− d− σ2d− 1

z2
→ −∞ as z → 0.

Thus the solution to the maximization problem is z∗ = n+ d+ σ2d+ 1, for which

2z∗ − n− d− σ2d− 1

z2∗
=

1

n+ d+ σ2d+ 1
.

Therefore we optimally set C(n) = n+ d+ σ2d+ 1:

θ̂(y,X) =
1

n+ d+ σ2d+ 1

n∑
i=1

yixi =⇒ R(θ̂;θ) =
d+ σ2d+ 1

n+ d+ σ2d+ 1
.

We conclude that an upper bound for the minimax risk is

RM(Θ) ≤ d+ σ2d+ 1

n+ d+ σ2d+ 1
.
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