STATS 300A

Suyash Gupta Homework 4 solutions

#1: SMALL NOISE LIMIT IN THE BOUNDED NORMAL MEAN MODEL

Solution.

(a) The estimator X has a constant risk function 2. So,

R(©;0%) < o?. (1)

(b) We use choice 1. Under the given prior, the posterior distribution #|x has a truncated Normal

Distribution. Precisely speaking,
X ~Y| -1<Y <1

where Y ~ N (X, c?)

From wiki, the mean of the posterior distribution is given by

which is the required Bayes estimator.

Now,

Take Z = X4,
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1
lim inf —R(Q,)

o—0 02

= lim inf E (Z-I—

o—0

> Elim inf

c—0

Z+

/N

=EZ°=1

where the last inequality is by Fatou’s lemma and the last equality is by continuity of Normal

density and distribution function.

(c¢) From part (a),

1
limsup = R(Q,) <1

o—0 o?

Hence, combining with b). we have the result.
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#2: A MODIFIED JAMES—STEIN ESTIMATOR

Solution.

(a) Here g(z) = 0(x) — & = —(x — z1)h(||z — Z|[). So,

R(6,6) = E(|0 — 0]*)
= d+E(||g(x)|]?) + 2E(div(g()))

Let f(z) = ||z — #1[?, so div(g(x) = —(d = D)h(f) — 2f1'(f).
So,

R(0,0) = d+E[fh(f)* — 2(d — 1)h(f) + 2fH ()]

(b) Plugging in the required values of h and A/, we get,
R(6,0) = d + (C* — 2dC + 6C)E(%)

(¢) We want C? — 2dC' + 6C' = C(C —2d + 6) < 0. If d > 3, then taking C' € (0.2d — 6) gives
the strict inequality.

(d) Consider the model where 6; are i.i.d. samples from N (u,0?), and X;|0; ~ N(6;,1). Following

2

the empirical Bayes procedure, we estimate p,0° using moment method. The marginal

distribution of X; is N(p, 1+ 02),s0 o= X and 02 = ||X — X||2/C — 1.
For squared error loss, Bayes estimate is

2
1 o

= 1

14+ 02 +1—i—02

HB;yes (ZL‘)

Plugging in the estimates for ji and o2, we have that QB;yes(x) is actually the modified James

Stein estimator.
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#3: A REGRESSION PROBLEM WITH RANDOM DESIGNS

Solution. Thanks to Zi Yang Kang for solution to Problem 3

(a) Let 0 be a minimax estimator. Suppose that for given data (y, X), dist(é(y,X); 0) > 1,
where dist(z; S) = inf{||z — s||» : s € S}. Then consider the procedure 6 defined by

_ 6(y,X) for dist(8(y,X);0) <1,
0 for dist(6(y, X); ©) > 1.

Observe that

~ 16(y,X) - 0|3 for dist(B(y, X);0) <1,
16(y, ) - 615 = {1

for dist(8(y, X); ©) > 1.
Consequently, R(é; 0) < R(é; 0) for every 0 € O; hence, if 6 is minimax optimal, then 0 is
minimax also. Therefore, to construct a minimax estimator 9, it suffices to consider 6 such
that dist(8(y, X); ©) < 1. Equivalently, it suffices to consider @ such that im(8) C B%(2),

the d-dimensional closed ball with radius 2.

(b) By part (a), we may assume without loss of generality that the action space A = B%(2).
Since A and © are compact and L is continuous, the minimax theorem applies; hence a least
favorable prior Q, € .#,(0) exists.

Consider the d-dimensional orthogonal group, O(d), endowed with its rotation action on ©
and A (i.e., g : v = Qu for Q € O(d) and v € O, .A) and its anti-rotation action on X
(i.e., pg : @ Q' for Q € O(d) for & € X). We claim that the model is invariant under
O(d). Indeed, observe that

(@) #Po{(y. X) € S} = (@) #Po{((y1, 1), (2, ®2), ..., (Yn, ®n)) € S}
= Pe{((yh QTw1)> <y27 QT:B2)7 ce (yna QT"Bn)) € S}
= Poo{((y1, 1), (2, 2), ..., (Y, T0)) € S} = Py {(y, X) € S}

Moreover, for alla € A, 8 € © and Q € O(d),

lvq(a) — (@)l =11Qa—QO|);=|la—0].
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Therefore the model is invariant under O(d). Since O(d) is compact and there exists a least
favorable prior 6*, hence there exists a least favorable prior Q, that is invariant under the
action ¢g : @ — Q8 on O. This means that (pg)x«Q. = Q. for every @ € O(d). The only
Q. € #1(0) satisfying this is the uniform prior.

We thus conclude that a least favorable prior Q, is the uniform prior on O, such that

Q.({601}) = Q.({02}) for any 04,0, € O.

As justified in part (b), the minimax theorem applies; therefore, the minimax estimator is

the Bayes estimator with respect to the least favorable prior Q. = Qunit.

Under square loss, the Bayes (and minimax) estimator 6, is given by

Here, the expectation is taken conditional on the data (y,X), with respect to the

(unconditional) measure Q, = Qunif on O.
We compute that
Eol|0(y,X) - 0]]5 =1— - Z (yi;, 6 . Eo{zn:l\ym!\g}-
Cn) & CmP 5
Independence of wy and @y implies that, for any distinct 4, j € {1,2,...,d},
Eo (vixi, y;x;) = Eo <me0 + w;x;, a:ja:jTG + wja:j>

—Eg{O a:az a:j 39}

Similarly,

=Ey {(91(EZ 1T 92‘T12 -+ edffz d) (1'7,2,1 + Ilj'iz + -4 15?,(1)} 4 02 Eo || x; Hg
=d+ 2+ o%d.
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On the other hand,

Eg <y¢$¢, 0> = Eg <.’D1.’EIB + w;x;, 0> = Eg {9%5(?271 + 9%1’?’2 + -+ Hflxid = 1.

(2

Combining our above computations yields

2n +n(d+2+02d)+n(n—1)

Simplifying: 2Cm) ; 21
5 n)—n-—d—o°d—
R(6;0)=1—n- EOIE

We wish to minimize R(@; 0). We adopt the following approach. Consider the maximization

problem:
2z —n—d—o%d—1
5 .

max
z€R ¥4

Using elementary calculus, we find that the solution z, must satisfy
222 —22,(2zs —n—d—0°d—1) =0 = 2z, (n+d+0°+1—2z) =0.

Observe that
2z —n—d—o%d—1

5 — —0o0 as z— 0.

z

Thus the solution to the maximization problem is z, = n + d + 02d + 1, for which

22*—n—d—a2d—1_ 1
22 S ntd+od+1

Therefore we optimally set C'(n) =n + d + o*d + 1:

1
Cn+d4o2d+1

d+o?d+1
n+d+o2d+1

0(y,X) Zyiwz’ —> R(6;6) =
i=1

We conclude that an upper bound for the minimax risk is

d+o%d+1
n+d+o?d+1

Ry (©) <
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