

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (<https://www.gradescope.com>) for homework submission (you should have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: A function denoising problem

Let $\boldsymbol{\theta}$ be a discrete function sampled on a regular grid in $[0, 1]$. Namely, for $n \in \mathbb{N}$, we let $\varepsilon = 1/n$, and

$$\boldsymbol{\theta} = (\theta(0), \theta(\varepsilon), \theta(2\varepsilon), \dots, \theta((n-1)\varepsilon)) \in \mathbb{R}^n. \quad (1)$$

We observe noisy measurements of this function $y_k = \theta(k\varepsilon) + z_k$, where $(z_k)_{k \leq n} \sim_{iid} \mathcal{N}(0, \sigma^2)$, and are interested in estimating $\boldsymbol{\theta}$ with respect to the normalized square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2/n$.

We define the discrete derivative by letting $\Delta\theta(k\varepsilon) = [\theta((k+1)\varepsilon) - \theta(k\varepsilon)]/\varepsilon$ for $k \in \{0, \dots, n-2\}$, and $\Delta\theta((n-1)\varepsilon) = [\theta(0) - \theta((n-1)\varepsilon)]/\varepsilon$ (periodic boundary conditions). We consider the following parameter class

$$\Theta(R, n) = \left\{ \boldsymbol{\theta} : \sum_{k=0}^{n-1} \theta(k\varepsilon) = 0, \sum_{k=0}^{n-1} \varepsilon (\Delta\theta(k\varepsilon))^2 \leq R \right\}. \quad (2)$$

(a) Give an expression for the linear minimax risk $R_L(\Theta(R, n))$.

[Hint: It might be convenient to use the discrete Fourier transform of $\boldsymbol{\theta}$.]

(b) Can you apply Pinsker's theorem and show that the linear minimax risk is close to the overall minimax risk $R_M(\Theta(R, n))$? Justify your answer and state explicitly any eventual condition that you are imposing on R, n .

2: A simple application of Le Cam's method

Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a differentiable probability density function, and assume that there exists another density function $g : \mathbb{R}^d \rightarrow \mathbb{R}$, and a constant M such that, for all $\mathbf{x} \in \mathbb{R}^d$

$$\|\nabla f(\mathbf{x})\|_2 \leq M g(\mathbf{x}). \quad (3)$$

We will denote by $\mathsf{P}_{\boldsymbol{\theta}}$ the probability distribution of $\mathbf{X} = \boldsymbol{\theta} + \mathbf{W}$ where $\mathbf{W} \sim f(\cdot)$ is noise with density f .

(a) Prove that, for any $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \in \mathbb{R}^d$,

$$\|\mathsf{P}_{\boldsymbol{\theta}_1} - \mathsf{P}_{\boldsymbol{\theta}_2}\|_{\text{TV}} \leq \frac{M}{2} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_2. \quad (4)$$

(b) Consider the problem of estimating $\boldsymbol{\theta} \in \Theta \equiv \mathbb{R}^d$ from data $\mathbf{X} \sim P_{\boldsymbol{\theta}}$ under the square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2$. Use the previous result to derive a lower bound on the minimax risk.

[Hint: It is sufficient to consider two priors Q_1, Q_2 given by Dirac's deltas.]

(c) Apply this lower bound to the case of Gaussian noise, namely to the case of f the density of the Gaussian distribution $N(0, \sigma^2 I_d)$. How does the result compare with the actual minimax risk?

3: Some properties of distances between distributions

(a) Let $P = P_1 \times P_2 \times \cdots \times P_n$ and $Q = Q_1 \times Q_2 \times \cdots \times Q_n$ be two product-form distributions (where, for each $i \leq n$, P_i, Q_i are probability measures on the same space \mathcal{X}_i). Show that

$$\|P - Q\|_{\text{TV}} \leq \sum_{i=1}^n \|P_i - Q_i\|_{\text{TV}}. \quad (5)$$

[Hint: Start with $n = 2$. It is fine to assume that the \mathcal{X}_i 's are finite sets.]

(b) Prove that there cannot be a reverse Pinsker inequality. Namely, there does not exist any function $f : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $f(t) > 0$ for $t > 0$ such that, for any two distributions P, Q ,

$$D(P\|Q) \leq f(\|P - Q\|_{\text{TV}}). \quad (6)$$

(c) Assume that P and Q are probability distributions over a finite set \mathcal{X} , with probability mass functions \mathbf{p}, \mathbf{q} , and assume $q(x) \geq q_{\min} > 0$ for all $x \in \mathcal{X}$. Prove that there exists $g : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $g(t, s) > 0$ for $t, s > 0$ such that, for any two probability mass functions \mathbf{p}, \mathbf{q} , we have

$$D(P\|Q) \leq g(\|P - Q\|_{\text{TV}}, q_{\min}). \quad (7)$$

We would like the function g to be such that $\lim_{z \rightarrow 0} g(z; q_{\min}) = 0$ for any $q_{\min} > 0$. Give an explicit expression for the function g .

[Hint: Write $D(P\|Q) = \mathbb{E}_Q(X \log X - X + 1)$, for $X = \frac{dP}{dQ}$.]

Optional

Can you suggest different priors Q_1, Q_2 to improve the lower bound in problem 2?