
Stat 300A Theory of Statistics

Homework 5: Solutions
Nikos Ignatiadis Due on November 7, 2018

• Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

• We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

• You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: A function denoising problem

Let θ be a discrete function sampled on a regular grid in [0, 1]. Namely, for n ∈ N, we let ε = 1/n, and

θ =
(
θ(0), θ(ε), θ(2ε), . . . , θ((n− 1)ε)

)
∈ Rn . (1)

We observe noisy measurements of this function yk = θ(kε) + zk, where (zk)k≤n ∼iid N(0, σ2), and are

interested in estimating θ with respect to the normalized square loss L(θ̂,θ) = ‖θ̂ − θ‖22/n.
We define the discrete derivative by letting ∆θ(kε) = [θ((k + 1)ε)− θ(kε)]/ε for k ∈ {0, . . . , n− 2}, and

∆θ((n− 1)ε) = [θ(0)− θ((n− 1)ε)]/ε (periodic boundary conditions). We consider the following parameter
class

Θ(R,n) =
{
θ :

n−1∑
k=0

θ(kε) = 0,

n−1∑
k=0

ε
(
∆θ(kε)

)2 ≤ R} . (2)

(a) Give an expression for the linear minimax risk RL(Θ(R,n)).

[Hint: It might be convenient to use the discrete Fourier transform of θ.]

(b) Can you apply Pinsker’s theorem and show that the linear minimax risk is close to the overall minimax
riskRM(Θ(R,n))? Justify your answer and state explicitly any eventual condition that you are imposing
on R, n.

Solution

(a) Starting with this problem, we directly observe that we may write the constraint
∑n−1
k=0 ε

(
∆θ(kε)

)2
in

Ellipsoidal form

θ>Aθ ≤ R/n

Here:

A =


2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
. . .

...
...

−1 0 0 0 · · · −1 2


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To apply Pinsker’s result, we need to diagonalize A. To this end, first onsider the DFT matrix
(Ukl)0≤k,l≤n−1 with Ukl = exp

(−2πikl
n

)
. Furthermore, recall the following properties: U∗U = nIn, so

that U/
√
n is unitary. We may check that U/

√
n diagonalizes A with eigenvalues 2(1− cos(2πj/n)).

One way to see this is to use Parseval’s identity for the DFT, as well as the Shift identity for the DFT
(below we write θ· = θ and θ·+1 = (θ1, . . . , θn−1, θ0)) with θk = θ(kε)). More concretely:

n‖θ· − θ·+1‖2 = ‖Uθ· − Uθ·+1‖2 Parseval

= ‖Uθ· − exp(2iπ · /n) · Uθ·‖2 (coordinatewise product, shift)

=

n−1∑
k=0

|1− exp(2ikπ/n)|2(Uθ·)
2
k

=

n−1∑
k=0

2(1− cos(2πk/n))(Uθ·)
2
k

Since the unitary matrix U/
√
n diagonalizes A, we note that there must exist also an orthogonal (real)

matrix O which diagonalizes A and has the same eigenvalues. Furthermore, note that 1st column and
row of U/

√
n just consists of entries 1/

√
n, thus also the 1st row of O will consist of these entries. Thus

upon mapping y 7→ ỹ = Oy, we observe that if we let θ̃ = Oθ, then ỹ ∼ N (θ̃, σ2). Furthermore the
constraints turn into:

θ̃0 =

n−1∑
i=0

1√
n
θi = 0

and

n−1∑
k=0

2(1− cos(2πk/n))θ̃
2

k ≤
R

n

Furthermore, since ‖θ̂ − θ‖22 = ‖Oθ̂ − Oθ‖22, we see that the transformed and the original estimation
problems are equivalent and hence that their (linear) minimax risks must coincide. Also, since we know
the first coordinate is 0, by a sufficiency argument we may discard the first observation Ỹ0 without
loss of information and find ourselves in a (n − 1)-dimensional Gaussian problem with the following
Ellipsoidal form:

Ỹ ∼ N (θ̃, σ2)

θ̃ ∈ Θ̃ = {θ̃ ∈ Rn−1 : θ̃
>
Ãθ̃ ≤ 1}

Here Ã = Diag(ã21, . . . , ã
2
n−1) and ãj =

√
2n
R (1− cos(2πj/n))

We are finally ready to apply Theorem 4.1 from the notes to get (the notes gives us the linear minimax
risk for the unnormalized loss so we further divide by n):

RL(θ) =
1

n
inf
λ≥0

{
λ2 + σ2

n−1∑
i=1

(1− λãj)2+

}

The minimum is achieved at the unique solution of:
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λ = σ2
n−1∑
j=1

ãj(1− λãj)+

Let us now get a bit more insight into this expression, i.e. what is the minimax rate ignoring constants?
We will write � to denote ”rate equality”, i.e. we will write an � bn to mean 0 < lim inf an/bn ≤
lim sup an/bn <∞.

First let us note that (for j small enough so that the first order Taylor expansion of 1− cos(x) ≈ x2/2
is accurate):

ãj �
j

n1/2R1/2

So with λ := λ(k) � n1/2R1/2

k we would get the equality:

n1/2R1/2

k
� σ2

k∑
j=1

j

n1/2R1/2
� σ2

n1/2R1/2
k2

Solve for k to get:

k3∗ �
nR

σ2
, i.e. k∗ �

n1/3R1/3

σ2/3

So the optimal λ∗ satisfies:

λ∗ � σ2/3n1/6R1/6

Finally we get the affine minimax risk:

RL(Θ) � σ4/3R1/3n−2/3

In particular, we recover the rate for the nonparametric regression problem over first-order Sobolev
ellipsoids (for fixed R).

(b) Directly applying Pinsker’s theorem (Theorem 4.2), recalling that here we are dealing with a normalized
loss, we get that for any ε < 1/2 we have (for a universal constant c0) that:

RM ≤ RL ≤ (1 + c0ε)RM +
c0
n
δ(ε)

Here:

δ(ε) = ã−2min exp(−Λ∗ε
2/64)

Λ∗ =
λ∗/σ

2

max1≤i≤(n−1) ãi(1− λ∗ãi)+

Note:

ãmin �
1

n1/2R1/2
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Hence we may bound the additive term as:

C1R

Note that if we can make the additive term o(RL),we will get RM/RL → 1. One way to achieve this is
(taking ε→ 0) to require that R = o(RL) or in other words R = o(σ4/3R1/3n−2/3), i.e. R = o(n−1σ2).
For such shrinking radius R thus Pinsker gives that linear minimax and minimax risks are the same
asymptotically.

Remark: Instead of considering a regime of shrinking radius, the same result also holds in a regime of
R >> n, where the radius R increases at some appropriate rate compared to the sample size n. Both
results are not that surprising given that we know that in the 1-dimensional bounded normal mean
model in which Z ∼ N (µ, 1), µ ∈ [−τ, τ ], the minimax risk and affine minimax risk are the same both
in the regime where τ → 0 and τ →∞.

# 2: A simple application of Le Cam’s method

Let f : Rd → R be a differentiable probability density function, and assume that there exists another density
function g : Rd → R, and a constant M such that, for all x ∈ Rd∥∥∇f(x)

∥∥
2
≤M g(x) . (3)

We will denote by Pθ the probability distribution of X = θ +W where W ∼ f( · ) is noise with density f .

(a) Prove that, for any θ1,θ2 ∈ Rd, ∥∥Pθ1
− Pθ2

∥∥
TV
≤ M

2
‖θ1 − θ2‖2 . (4)

(b) Consider the problem of estimating θ ∈ Θ ≡ Rd from data X ∼ Pθ under the square loss L(θ̂,θ) =

‖θ̂ − θ‖22. Use the previous result to derive a lower bound on the minimax risk.

[Hint: It is sufficient to consider two priors Q1, Q2 given by Dirac’s deltas.]

(c) Apply this lower bound to the case of Gaussian noise, namely to the case of f the density of the
Gaussian distribution N(0, σ2Id). How does the result compare with the actual minimax risk?

Solution:

(a) We first note that Pθ has a density w.r.t. Lebesgue measure, namely fθ(x) = f(x − θ) (i.e. we are
dealing with a location family problem). Therefore:
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∥∥Pθ1
− Pθ2

∥∥
TV

=
1

2

∫
Rd

|fθ1
(x)− fθ2

(x)|dx

=
1

2

∫
Rd

|f(x− θ1)− f(x− θ2)|dx

=
1

2

∫
Rd

|
∫ 1

0

d

dt
f(x− θ1 + t(θ1 − θ2)dt|dx

=
1

2

∫
Rd

|
∫ 1

0

∇f(x− θ1 + t(θ1 − θ2))>(θ2 − θ1)dt|dx

≤ 1

2

∫
Rd

∫ 1

0

‖∇f(x− θ1 + t(θ1 − θ2))‖‖θ2 − θ1‖dtdx

≤ ‖θ2 − θ1‖
2

∫
Rd

∫ 1

0

Mg(x− θ1 + t(θ1 − θ2))dtdx

=
M

2
‖θ2 − θ1‖ (by Fubini’s theorem)

(b) We will directly apply Le Cam’s Lemma. To this end, first note that for any a ∈ Rd we have that:

||a− θ1||2 + ||a− θ2||2 ≥
1

2
||θ1 − θ2||2

In other words we may take d(θ1, θ2) = 1
2 ||θ1 − θ2||

2. We want this to be ≥ 2δ.

Hence let us set δ = 1
4 ||θ1 − θ2||

2, where we will choose these parameters later.

Then:

1−
∥∥Pθ1

− Pθ2

∥∥
TV
≥ 1− M

2
||θ1 − θ2||2

Le Cam gives the lower bound:

≥ ||θ1 − θ2||
2

8

(
1− M

2
||θ1 − θ2||2

)
Plugging in ||θ1 − θ2|| = 4

3M we get the lower bound 2
27M2 .

(c)

‖∇f(x)‖ =
‖x‖

σ2(2πσ2)d/2
e−1/(2σ

2)‖x‖2

The r.h.s. has finite integral. Letting Z ∼ N(0, Id), the desired bound holds with

M−1 =

∫
‖x‖

σ2(2πσ2)d/2
e−1/(2σ

2)‖x‖2dx =
1

σ
E[‖Z‖] (5)

We know E‖Z‖ ≈
√
d, so plugging this into the expression from the previous part gives:

RB(Q) ≥ 2σ2(E[‖Z‖])2

27
≈ 2σ2

27d

The minimax risk in the problem is RM = σ2d, so our argument recovers the correct dependence in σ2

but not in d.
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# 3: Some properties of distances between distributions

(a) Let P = P1 ×P2 × · · · ×Pn and Q = Q1 ×Q2 × · · · ×Qn be two product-form distributions (where, for
each i ≤ n, Pi, Qi are probability measures on the same space Xi). Show that

∥∥P− Q
∥∥
TV
≤

n∑
i=1

∥∥Pi − Qi
∥∥
TV

. (6)

[Hint: Start with n = 2. It is fine to assume that the Xi’s are finite sets.]

(b) Prove that there cannot be a reverse Pinsker inequality. Namely, there does not exist any function
f : R≥0 → R≥0 with f(t) > 0 for t > 0 such that, for any two distributions P,Q.

D(P‖Q) ≤ f(‖P− Q‖TV) . (7)

(c) Assume that P and Q are probability distributions over a finite set X , with probability mass functions
p, q, and assume q(x) ≥ qmin > 0 for all x ∈ X . Prove that there exists g : R≥0 × R≥0 → R≥0 with
g(t, s) > 0 for t, s > 0 such that, for any two probability mass functions p, q, we have

D(P‖Q) ≤ g(‖P− Q‖TV, qmin) . (8)

We would like the function g to be such that limz→0 g(z; qmin) = 0 for any qmin > 0. Give an explicit
expression for the function g.

[Hint: Write D(P‖Q) = EQ(X logX −X + 1), for X = dP
dQ .]

Solution:

(a) Consider the case where X1 ∈ X1, X2 ∈ X2 where Xi are finite sets. We will show the result in the case
where n = 2, the general case follows by induction.

‖P −Q‖TV =
1

2

∑
x1∈X1,x2∈X2

|p1(x1)pc(x2)− q1(x1)q2(x2)|

=
1

2

∑
x1∈X1,x2∈X2

|(p1(x1)− q1(x1))p2(x2) + (q2(x2)− p2(x2))q1(x1)|

≤ 1

2

∑
x1∈X1,x2∈X2

|p1(x1)− q1(x1)|p2(x2) + |q2(x2)− p2(x2)|q1(x1)

= ‖P1 −Q1‖TV + ‖P2 −Q2‖TV

(b) To show this it suffices to argue that for any v > 0, there exist P,Q with ||P − Q||TV = v but
D(P ||Q) = ∞. Consider X = {1, 2, 3}. Let P = vδ1 + (1 − v)δ2 and Q = vδ3 + (1 − v)δ2 so that

‖P −Q‖TV = v. But D(P ||Q) =∞ because Q(1) = 0 and hence
∑
x∈X P (x) log(P (x)

Q(x) ) =∞.

(c) With X = dP
dQ , and using the hint, we write the KL divergence as
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D(P ||Q) = EQ(X logX −X + 1)

≤ EQ(X(X − 1)−X + 1)

= EQ(X2)− 2EQ(X) + 1

= EQ(X2)− 1

=
∑
x∈X

p(xi)
2

q(xi)2
q(xi)− 1

=
∑
x∈X

(p(xi)− q(xi))2

q(xi)

≤ 1

qmin

∑
x∈X

(p(xi)− q(xi))2

≤ 1

qmin

(∑
x∈X
|p(xi)− q(xi)|

)2

=
4||P −Q||2TV

qmin

Thus we may choose g(t, s) = 4t2

s for t, s > 0.
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