Stat 300A Theory of Statistics

Homework 5: Solutions
Nikos Ignatiadis Due on November 7, 2018

e Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

e We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

e You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: A function denoising problem

Let 0 be a discrete function sampled on a regular grid in [0, 1]. Namely, for n € N, we let £ = 1/n, and
0 = (0(0),6(¢),0(2¢),...,0((n—1)e)) € R™. (1)

We observe noisy measurements of this function y, = 6(ke) + zx, where (2x)r<n ~iid N(O702)7 and are
interested in estimating @ with respect to the normalized square loss L(6,0) = |6 — 6]|2/n.

We define the discrete derivative by letting Af(ke) = [0((k + 1)e) — O(ke)]/e for k € {0,...,n — 2}, and
AfB((n —1)e) = [0(0) — O((n — 1)e)]/e (periodic boundary conditions). We consider the following parameter
class

O(R,n) = {0 : z_: 0(ke) = 0, i e(A0(ke))” < R} . (2)
k=0 k=0

(a) Give an expression for the linear minimax risk R, (O(R,n)).

[Hint: It might be convenient to use the discrete Fourier transform of 6.]

(b) Can you apply Pinsker’s theorem and show that the linear minimax risk is close to the overall minimax
risk Ry (O(R,n))? Justify your answer and state explicitly any eventual condition that you are imposing
on R, n.

Solution

(a) Starting with this problem, we directly observe that we may write the constraint ZZ;S 5(A9(k5))2 in
Ellipsoidal form

0" A0 < R/n
Here:
2 -1 0 0 0 -1
-1 2 -1 0 0 0
a-lo -1 2 -1 0 0
-1 0 0 0 -1 2
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To apply Pinsker’s result, we need to diagonalize A. To this end, first onsider the DFT matrix
(Ukt)o<k,i<n—1 with Uy = exp (%ZM) Furthermore, recall the following properties: U*U = nl,,, so
that U/y/n is unitary. We may check that U/\/n diagonalizes A with eigenvalues 2(1 — cos(2mj/n)).

One way to see this is to use Parseval’s identity for the DFT, as well as the Shift identity for the DFT
(below we write 8. = 0 and 0.1 = (01,...,0,_1,00)) with 0, = 6(ke)). More concretely:

nl|@. — 0. 1|> =||UO. —UB.,1||*> Parseval
= |U6. — exp(2i7 - /n) - UBO.|*> (coordinatewise product, shift)

Z_: |1 — exp(2ikn/n)|>(U6.)7

k=
n—

- O

2(1— cos(27rk/n))(U0.)i

k=0

Since the unitary matrix U//n diagonalizes A, we note that there must exist also an orthogonal (real)
matrix O which diagonalizes A and has the same eigenvalues. Furthermore, note that 1st column and
row of U/+/n just consists of entries 1/+/n, thus also the 1st row of O will consist of these entries. Thus
upon mapping y — ¥ = Oy, we observe that if we let 8 = 08, then y ~ ./\/'(é, o?). Furthermore the
constraints turn into:

B n—1 1
0o=S " ——0,=0
and
— -2 R
2(1 — cos(27k/n))0, < —
k=0 "
Furthermore, since [|@ — 0|2 = |08 — 08]|2, we see that the transformed and the original estimation

problems are equivalent and hence that their (linear) minimax risks must coincide. Also, since we know
the first coordinate is 0, by a sufficiency argument we may discard the first observation Yy without
loss of information and find ourselves in a (n — 1)-dimensional Gaussian problem with the following
Ellipsoidal form:

Y ~ N(8,0%)

0cO={0cR" .9 A9<1)

Here A = Diag(a3,...,a2_,) and d; = \/%"(1 — cos(2mj/n))

We are finally ready to apply Theorem 4.1 from the notes to get (the notes gives us the linear minimax
risk for the unnormalized loss so we further divide by n):

RL(0) = Lt {/\2 + 02712 (1— Aaj)i}

n A>0
- i=1

The minimum is achieved at the unique solution of:



n—1
A=0">"a;(1—Aij)s
j=1

Let us now get a bit more insight into this expression, i.e. what is the minimax rate ignoring constants?
We will write < to denote "rate equality”, i.e. we will write a,, < b, to mean 0 < liminf a, /b, <
lim sup a,, /b,, < 0.

First let us note that (for j small enough so that the first order Taylor expansion of 1 — cos(z) ~ x2/2
is accurate):

. J

~

aj = nl/2R1/2

So with A := A(k) < % we would get the equality:

nl/2R1/2 o2

k )
- 2 J - 2
L ~0 ; nl/2R1Z n1/2R1/2k

Solve for k to get:

nR | n1/3R1/3
l1.e. Ky X W

So the optimal \, satisfies:
A, = 2/3p1/6 R1/6
Finally we get the affine minimax risk:
RL(©) =< o*/3RY3p2/3

In particular, we recover the rate for the nonparametric regression problem over first-order Sobolev
ellipsoids (for fixed R).

Directly applying Pinsker’s theorem (Theorem 4.2), recalling that here we are dealing with a normalized
loss, we get that for any € < 1/2 we have (for a universal constant ¢p) that:

Ry < Ry, < (14 cog) Ry + %5(6)

Here:
0(e) = pip exp(—Ase?/64)
A* = A*/?Q _
max; <i<(n—1) @il — Au@i)+
Note:

_ 1
Amin < —F—=
min n1/2R1/2



Hence we may bound the additive term as:

CiR

Note that if we can make the additive term o(Ry,),we will get Ry; /Ry, — 1. One way to achieve this is
(taking € — 0) to require that R = o(Ry) or in other words R = o(¢*/3R'/3n=2/3),i.e. R = o(n"'0?).
For such shrinking radius R thus Pinsker gives that linear minimax and minimax risks are the same
asymptotically.

Remark: Instead of considering a regime of shrinking radius, the same result also holds in a regime of
R >> n, where the radius R increases at some appropriate rate compared to the sample size n. Both
results are not that surprising given that we know that in the 1-dimensional bounded normal mean
model in which Z ~ N (u, 1), p € [—7, 7], the minimax risk and affine minimax risk are the same both
in the regime where 7 — 0 and 7 — oc.

# 2: A simple application of Le Cam’s method

Let f: R — R be a differentiable probability density function, and assume that there exists another density
function g : R — R, and a constant M such that, for all z € R?

IV f ()], < Mg(x). 3)
We will denote by Pg the probability distribution of X = 68 + W where W ~ f(-) is noise with density f.

(a) Prove that, for any 6,0, € R9,

M
HP91 — PQQHTV < > 101 — 022 (4)

(b) Consider the problem of estimating 8 € © = R? from data X ~ Pg under the square loss L(6,8) =
|0 — 6]|3. Use the previous result to derive a lower bound on the minimax risk.

[Hint: It is sufficient to consider two priors Qi, Q2 given by Dirac’s deltas.]
(¢) Apply this lower bound to the case of Gaussian noise, namely to the case of f the density of the
Gaussian distribution N(0,02%I,;). How does the result compare with the actual minimax risk?

Solution:

(a) We first note that Py has a density w.r.t. Lebesgue measure, namely fo(x) = f(x — 0) (i.e. we are
dealing with a location family problem). Therefore:



1
1P = Poallay = 5 | 160 (@) = fos @)l
1

=5 | 1f@=61) - f(z 62|z
Rd

1 Ld
- 5/}Rd|/0 & F(@— 0+ (0 — 0)dt]de

1
%/R |/O V(@ =01+ 1(8: — 02))" (82 — 01)dt|dz

IN

1 1
5 [ [ IV~ 61446, - 62)) 62 - 61 drde
R4 JO

162 — 6, '
< — Mg(z — 01 + (61 — 03))dtdx
re Jo

M
7”92 — 04| (by Fubini’s theorem)

b) We will directly apply Le Cam’s Lemma. To this end, first note that for any a € R% we have that:
( y apply : y

lla —01* +la — 65* > 5161 — 62

DN | =

In other words we may take d(61,62) = 5|/01 — 62]|>. We want this to be > 2.
Hence let us set § = 1||81 — 65||?, where we will choose these parameters later.
Then:

M
1—||Pg, — Pe, 1—7||91—92\|2

ey =

Le Cam gives the lower bound:

0, — 0||? M
> 116, — 8| <1 - 7”91 —92|2>

- 8
Plugging in [|61 — 03] = 3AM we get the lower bound 27?\/12'
) o]
_ = —1/@e?)|e)?
||Vf(x)H 0,2(27r0,2)d/26

The r.h.s. has finite integral. Letting Z ~ N(0, I;), the desired bound holds with

V= [ e O e = B2 )
g

We know E| Z|| = v/d, so plugging this into the expression from the previous part gives:

20%(E[[|Z]l)? _ 20*
Rs(Q) 2 o7 R omd

The minimax risk in the problem is Ry, = 02d, so our argument recovers the correct dependence in o2

but not in d.



# 3: Some properties of distances between distributions

(a) Let P=Py xPyx---xP,and Q =Q; X Qg X - -+ X Q, be two product-form distributions (where, for
each i < n, P;, Q; are probability measures on the same space X;). Show that

HP_QHTVSZHPi_QiHTV' (6)
i=1

[Hint: Start with n = 2. It is fine to assume that the X;’s are finite sets.]

(b) Prove that there cannot be a reverse Pinsker inequality. Namely, there does not exist any function
f:Rsg — Ry with f(¢) > 0 for ¢ > 0 such that, for any two distributions P, Q.

D(PIQ) < (I[P = Qllrv) - (7)

(¢) Assume that P and Q are probability distributions over a finite set X', with probability mass functions
p, 4, and assume () > qmin > 0 for all z € X. Prove that there exists g : R>g x R>g — Rx>o with
g(t,s) > 0 for t,s > 0 such that, for any two probability mass functions p,q, we have

D(P[Q) < g(IP = QllTv, dmin) - (8)

We would like the function g to be such that lim, ¢ g(2; qmin) = 0 for any gmin > 0. Give an explicit
expression for the function g.

[Hint: Write D(P[|Q) = Eq(X log X — X + 1), for X = 4§ ]
Solution:

(a) Consider the case where X; € X1, X5 € Xy where X are finite sets. We will show the result in the case
where n = 2, the general case follows by induction.

IP-Qlrv=3 Y In(enie) - aloe)
T1 €EX1,T2E€X
= % Yo @) = a@)pa(en) + (a2(22) = pa(e2))gr(21)]
T1 €EX1,T2€X
< % Z Ip1(21) — q1(@1)[p2(22) + |g2(22) — p2(22)]q1 (1)

T1E€EX1,22€EX,

1P1 = Qillrv + 1Pz — Qall7v

(b) To show this it suffices to argue that for any v > 0, there exist P,Q with ||[P — Q||ry = v but
D(P||Q) = oco. Consider X = {1,2,3}. Let P = vd; + (1 — v)d2 and Q = vd3 + (1 — v)d2 so that

1P = Q|l7v = v. But D(P||Q) = 00 because Q(1) = 0 and hence ¥, P(z)log(H4) = .

(¢) With X = %, and using the hint, we write the KL divergence as
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Thus we may choose g(t,s) = %2 for t,s > 0.
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