

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (<https://www.gradescope.com>) for homework submission (you should have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Sufficient statistics (TPE 1.6.32,1.6.33))

(a) Consider two statistical models (i.e. two classes of distributions) $\mathcal{P}_0, \mathcal{P}_1$ on the same sample space \mathcal{X} , such that $\mathcal{P}_0 \subseteq \mathcal{P}_1$. Let \mathbf{T} be a sufficient statistics for \mathcal{P}_1 . Show that it is sufficient for \mathcal{P}_0 as well.

(b) Continuing from the previous point, assume that, for any $\mathbf{P} \in \mathcal{P}_1$ there exists $\mathbf{P}' \in \mathcal{P}_0$ such that, for any $N \subseteq \mathcal{X}$ with $\mathbf{P}'(N) = 0$, we have $\mathbf{P}(N) = 0$. Show that, if \mathbf{T} is sufficient for $\mathcal{P}_0, \mathcal{P}_1$, and is complete for \mathcal{P}_0 , then it is complete for \mathcal{P}_1 .

(c) Let \mathcal{P} be the family of distributions of n i.i.d. random variables X_1, \dots, X_n , with some common density $\mathbf{p}(\cdot)$ on \mathbb{R} . (In other words $\mathcal{P} = \{\mathbf{p}^{\otimes n} : \mathbf{p} \text{ is a density on } \mathbb{R}\}$ is a class of probability distributions on \mathbb{R}^n .) Prove that the order statistics $X_{(1)}, \dots, X_{(n)}$ is complete.

[Hint: you can use the submodel \mathcal{P}_0 formed by density of the form $\exp\{\theta_1 \sum_{i=1}^n x_i + \dots + \theta_n \sum_{i=1}^n x_i^n - \sum_{i=1}^n x_i^{2n}\}$. You can also use the fact that if $\sum_{i=1}^n a_i^k = \sum_{i=1}^n b_i^k$ for all $k \leq n$, then $(a_i)_{i \leq n}$ is a permutation of $(b_i)_{i \leq n}$.]

(d) Continuing from the previous point, determine an UMVU estimator of $\mathbf{P}(X_1 \leq x) = \int_{-\infty}^x f(t) dt$ in the class \mathcal{P} .

2: Unbiased estimation from Binomials (TPE 2.1.17)

Let $\mathbf{P}_\theta = \text{Binom}(n, \theta)$, $\theta \in \Theta = [0, 1]$. We consider unbiased estimation of $g(\theta) = \theta^3$.

(a) Show that, for $n \leq 2$, no unbiased estimator exists. What happens for $n = 3$?

(b) Use the orthogonality condition to construct an UMVU estimator for $n > 3$.

3: Logistic regression

Consider a logistic regression model, where we are given i.i.d. pairs (Y_i, \mathbf{X}_i) , $i \leq n$, with $\mathbf{X}_i \in \mathbb{R}^d$ a feature vector, and $Y_i \in \{0, 1\}$ a label (or response variable). The distribution of the \mathbf{X}_i given by $\mathbf{p}_\mathbf{X}$, and the distribution of Y_i given \mathbf{X}_i is given by

$$\mathbf{P}_\theta(Y_i = y_i | \mathbf{X}_i = \mathbf{x}_i) = \frac{e^{y_i \langle \boldsymbol{\theta}, \mathbf{x}_i \rangle}}{1 + e^{\langle \boldsymbol{\theta}, \mathbf{x}_i \rangle}}. \quad (1)$$

(a) Derive an expression for the Fisher information matrix $\mathbf{I}_F(\boldsymbol{\theta})$.

(b) Assume $p_{\mathbf{X}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Show that

$$\mathbf{I}_F(\boldsymbol{\theta}) = c_0 \mathbf{I}_d + c_1 \boldsymbol{\theta} \boldsymbol{\theta}^\top, \quad (2)$$

where $c_0 = c_0(\|\boldsymbol{\theta}\|)$ and $c_1 = c_1(\|\boldsymbol{\theta}\|_2)$ are scalars that depend on the norm of $\boldsymbol{\theta}$. Provide expressions for c_0, c_1 in terms of one-dimensional integrals.

(c) Generalize the previous formula for $p_{\mathbf{X}} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

[Hint: In solving this problems, it might be useful to remember Gaussian integration by parts. If $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ takes values in \mathbb{R}^d , and $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable and such that the expectations below make sense, then

$$\mathbb{E}\{X_i f(\mathbf{X})\} = \sum_{j=1}^d \Sigma_{ij} \mathbb{E}\left\{\frac{\partial f}{\partial x_j}(\mathbf{X})\right\}. \quad (3)$$

]