

Stats 300A HW6 Solutions

Song Mei

November 15, 2018

Problem 1

(a)

Since $\mathbf{T}(\mathbf{x})$ is a sufficient statistics of statistical model \mathcal{P}_1 , by definition, the conditional distribution of $[\mathbf{X}|\mathbf{T}(\mathbf{X}) = \mathbf{t}]$ under each $\mathbf{P}_\theta \in \mathcal{P}_1$ are the same. Since $\mathcal{P}_0 \subseteq \mathcal{P}_1$, the conditional distribution of $[\mathbf{X}|\mathbf{T}(\mathbf{X}) = \mathbf{t}]$ under each $\mathbf{P}_\theta \in \mathcal{P}_0$ are the same. By definition, $\mathbf{T}(\mathbf{x})$ is a sufficient statistics of statistical model \mathcal{P}_0 .

(b)

For any g such that $\mathbf{E}_\theta[g(\mathbf{T}(\mathbf{X}))] = 0$ for $\theta \in \mathcal{P}_1$, by the completeness of \mathbf{T} w.r.t. \mathcal{P}_0 , we have $\mathbf{P}_\theta(g(\mathbf{T}(\mathbf{X})) = 0) = 1$ for $\theta \in \mathcal{P}_0$. By the null set property of \mathcal{P}_1 and \mathcal{P}_0 , we have $\mathbf{P}_\theta(g(\mathbf{T}(\mathbf{X})) = 0) = 1$ for $\theta \in \mathcal{P}_1$. That is, \mathbf{T} is complete sufficient w.r.t. \mathcal{P}_1 .

(c)

Consider the exponential family

$$\mathcal{P}_0 = \left\{ p_\theta(x) = c(\theta) \exp \left(\theta_1 \sum_{i=1}^n x_i + \dots + \theta_n \sum_{i=1}^n x_i^n - \sum_{i=1}^n x_i^{2n} \right) : \theta \in \mathbb{R}^n \right\}.$$

It is easy to see that $\mathcal{P}_0 \subseteq \mathcal{P}$. By the property of exponential family, the complete sufficient statistics for \mathcal{P}_0 gives $T_0(\mathbf{x}) = (\sum_{i=1}^n x_i, \dots, \sum_{i=1}^n x_i^n)$. Denote $T(\mathbf{x}) = (x_{(1)}, \dots, x_{(n)})$. By the hints, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have $T_0(\mathbf{x}) = T_0(\mathbf{y})$ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Hence T is also a complete sufficient statistics for \mathcal{P}_0 . Since all distributions in \mathcal{P} has densities, it satisfies the null set property. By problem (b), T is a complete sufficient statistics for \mathcal{P} .

(d)

Consider estimator

$$A(\mathbf{X}) = \sum_{i=1}^n \mathbf{1}\{x_{(i)} \leq x\}/n.$$

This estimator is a function of the order statistics. It is also unbiased for $\int_{-\infty}^x f(t)dt$. So it is UMVU.

Problem 2

(a)

Let $\mathbf{x} \sim \text{Binom}(2, \theta)$. For any estimator $\hat{\theta}(\mathbf{x})$, we have

$$\mathbf{E}_\theta[\hat{\theta}(\mathbf{x})] = \mathbf{E}[\hat{\theta}(0)](1-\theta)^2 + \mathbf{E}[\hat{\theta}(1)]2\theta(1-\theta) + \mathbf{E}[\hat{\theta}(2)]\theta^2.$$

For any fixed numbers $E[\hat{\theta}(i)]$ for $i = 0, 1, 2$, $E_\theta[\hat{\theta}(\mathbf{x})]$ is a degree 2 polynomial of θ , and it cannot be identical to a degree 3 polynomial.

Let $\mathbf{x} \sim \text{Binom}(3, \theta)$. For any deterministic estimator $\hat{\theta}(\mathbf{x})$, we have

$$E_\theta[\hat{\theta}(\mathbf{x})] = \hat{\theta}(0)(1-\theta)^3 + \hat{\theta}(1)3\theta(1-\theta)^2 + \hat{\theta}(2)3\theta^2(1-\theta) + \hat{\theta}(3)\theta^3.$$

Setting $\hat{\theta}(3) = 1$ and $\hat{\theta}(0) = \hat{\theta}(1) = \hat{\theta}(2) = 0$, we get an unbiased estimator for θ^3 .

(b)

An unbiased estimator is

$$A(\mathbf{x}) = \mathbf{1}\{x_1 = x_2 = x_3 = 1\}.$$

Using the conditioning mechanism, we have

$$\begin{aligned} A_*(t) &= E_\theta[\mathbf{1}\{X_1 = X_2 = X_3 = 1\}|T(\mathbf{X}) = t] = P_\theta(X_1 = X_2 = X_3 = 1|T(\mathbf{X}) = t) \\ &= P_\theta\left(X_1 = X_2 = X_3 = 1, \sum_{i=4}^n X_i = t-3\right)/P_\theta\left(\sum_{i=1}^n X_i = t\right) \\ &= \theta^3 \binom{n-3}{t-3} \theta^{t-3} (1-\theta)^{n-t} \mathbf{1}\{t \geq 3\} / \left[\binom{n}{t} \theta^t (1-\theta)^{n-t} \right] \\ &= t(t-1)(t-2)/[n(n-1)(n-2)]. \end{aligned}$$

Hence the UMVU gives $A_*(T(\mathbf{x})) = T(\mathbf{x})(T(\mathbf{x})-1)(T(\mathbf{x})-2)/[n(n-1)(n-2)]$.

Problem 3

(a)

The log-likelihood function gives

$$\begin{aligned} \ell(\boldsymbol{\theta}) &= \log \prod_{i=1}^n \left[P(Y_i = y_i | \mathbf{X}_i = \mathbf{x}_i) p_{\mathbf{X}}(\mathbf{x}_i) \right] \\ &= \sum_{i=1}^n \log \frac{\exp\{y_i \langle \boldsymbol{\theta}, \mathbf{x}_i \rangle\}}{1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x}_i \rangle\}} p_{\mathbf{X}}(\mathbf{x}_i) \\ &= \sum_{i=1}^n \left[y_i \langle \boldsymbol{\theta}, \mathbf{x}_i \rangle - \log(1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x}_i \rangle\}) + \log p_{\mathbf{X}}(\mathbf{x}_i) \right]. \end{aligned}$$

Hence

$$\dot{\ell}(\boldsymbol{\theta}) = \sum_{i=1}^n \left[y_i - \exp\{\langle \boldsymbol{\theta}, \mathbf{x}_i \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x}_i \rangle\}) \right] \mathbf{x}_i.$$

The Fisher information matrix gives

$$\begin{aligned} I_F(\boldsymbol{\theta}) &= n E_\theta \{ [y - \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})]^2 \mathbf{x} \mathbf{x}^\top \} \\ &= n E_{\mathbf{x}} E_\theta \{ [y - \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})]^2 \mathbf{x} \mathbf{x}^\top | \mathbf{x} \} \\ &= n E_{\mathbf{x}} \{ \{ [\exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})]^2 / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\}) \\ &\quad + [1 / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})]^2 \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\}) \} \mathbf{x} \mathbf{x}^\top \} \\ &= n E_{\mathbf{x}} \{ [\exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\} / (1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})]^2 \mathbf{x} \mathbf{x}^\top \}. \end{aligned}$$

(b)

Let U be the orthogonal transform such that $U\boldsymbol{\theta} = \theta\mathbf{e}_1$ where $\theta = \|\boldsymbol{\theta}\|_2$. Let $\mathbf{z} \equiv U\mathbf{x}$. Since $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, we have $\mathbf{z} = U\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Note $\langle \boldsymbol{\theta}, \mathbf{x} \rangle = \theta z_1$, we have

$$I_F(\boldsymbol{\theta}) = n\mathbf{E}_{\mathbf{x}}\{[\exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\}/(1 + \exp\{\langle \boldsymbol{\theta}, \mathbf{x} \rangle\})^2]\mathbf{x}\mathbf{x}^T\} = nU^T\mathbf{E}_{\mathbf{z}}\{[\exp\{\theta z_1\}/(1 + \exp\{\theta z_1\})^2]\mathbf{z}\mathbf{z}^T\}U.$$

Denote

$$S(\theta) \equiv \mathbf{E}_{\mathbf{z}}\{[\exp\{\theta z_1\}/(1 + \exp\{\theta z_1\})^2]\mathbf{z}\mathbf{z}^T\}.$$

Then $I_F(\boldsymbol{\theta}) = nU^T S(\theta)U$.

The off-diagonal elements of $S(\theta)$ must be 0, because z_i and z_j for $i \neq j$ are mean zero independent Gaussians. The first diagonal element of $S(\theta)$ gives

$$d_1(\theta) \equiv S(\theta)_{11} = \mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2]G^2\}.$$

The other diagonal elements of $S(\theta)$ gives

$$d_2(\theta) \equiv S(\theta)_{22} = \dots = S(\theta)_{nn} = \mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2]\}.$$

As a result, we have

$$\begin{aligned} I_F(\boldsymbol{\theta}) &= nU^T S(\theta)U = nU^T[d_2(\theta)\mathbf{I} + (d_1(\theta) - d_2(\theta))\mathbf{e}_1\mathbf{e}_1^T]U = n[d_2(\theta)\mathbf{I} + (d_1(\theta) - d_2(\theta))\boldsymbol{\theta}\boldsymbol{\theta}^T/\theta^2] \\ &= c_0(\|\boldsymbol{\theta}\|_2)\mathbf{I}_d + c_1(\|\boldsymbol{\theta}\|_2)\boldsymbol{\theta}\boldsymbol{\theta}^T, \end{aligned}$$

where

$$c_0(\theta) = n\mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2]\},$$

$$c_1(\theta) = n\mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2](G^2 - 1)\}/\theta^2.$$

(c)

Let $\mathbf{y} \equiv \Sigma^{-1/2}\mathbf{x}$. Since $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, we have $\mathbf{y} = \Sigma^{-1/2}\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Let U be the orthogonal transform such that $U\Sigma^{1/2}\boldsymbol{\theta} = \theta\mathbf{e}_1$, where $\theta = \|\Sigma^{1/2}\boldsymbol{\theta}\|_2$. Let $\mathbf{z} = U\mathbf{y} = U\Sigma^{-1/2}\mathbf{x}$, then $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. We have (note $\langle \boldsymbol{\theta}, \mathbf{x} \rangle = \theta z_1$, where $\theta = \|\Sigma^{1/2}\boldsymbol{\theta}\|_2$)

$$\begin{aligned} I_F(\boldsymbol{\theta}) &= n\Sigma^{1/2}U^T\mathbf{E}_{\mathbf{z}}\{[\exp\{\theta z_1\}/(1 + \exp\{\theta z_1\})^2]\mathbf{z}\mathbf{z}^T\}U\Sigma^{1/2} = n\Sigma^{1/2}U^T S(\theta)U\Sigma^{1/2}, \\ &= n\Sigma^{1/2}U^T[d_2(\theta)\mathbf{I} + (d_1(\theta) - d_2(\theta))]\Upsilon\Sigma^{1/2} = n[d_2(\theta)\Sigma + (d_1(\theta) - d_2(\theta))\Sigma\boldsymbol{\theta}\boldsymbol{\theta}^T\Sigma/\theta^2] \\ &= c_0(\|\Sigma^{1/2}\boldsymbol{\theta}\|_2)\Sigma + c_1(\|\Sigma^{1/2}\boldsymbol{\theta}\|_2)\Sigma\boldsymbol{\theta}\boldsymbol{\theta}^T\Sigma, \end{aligned}$$

where

$$c_0 = n\mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2]\},$$

$$c_1 = n\mathbf{E}_{G \sim \mathcal{N}(0,1)}\{[\exp\{\theta G\}/(1 + \exp\{\theta G\})^2](G^2 - 1)\}/\theta^2.$$