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1 The decision theory framework

In this section, we go over the concepts in the decision theory framework using the example “biased coin

flips”

1.1

, or say “Bernoulli random experiment”.

Decision theory concepts

Statistical model. A statistical model is a family of distribution P, indexed by a parameter 8 € ©. We
write

P={Pyg:0cO}

Each Py are probability distribution on the same sample space X'. We call the random variable X ~ Py
a sample under measure Pg.

Loss function. Denote A C R* to be the space of possible decision. When decision a is made, and the
actual parameter is 0, we incur a loss L(a, @), where

L: Ax0 =R,
(a,0) —L(a,0).

Statistical procedure/estimator. A statistical procedure is a mapping 4 : X — A. When A = O and
A is an estimate of 8, we also write A as 6.

Risk function. We measure the quality of the procedure A under a loss function L, by the risk function
R(A;0), defined as

R(A;0) =EgL(A(X),0) :/ L(A(x),0)Pg(dx).
X
Bayes optimality. The risk function is a function of 8, so that we cannot compare different procedure

using the risk function directly. Given a prior Q on the space ©, we define the expected risk function
as

Re(4:Q) = / R(A:0)Q(d6).

o)
The procedure A, is Bayes optimal if it achieves the minimum expected risk

Rp(Ay; Q) = inf Rp(4; Q).
The minimum expected risk is also called Bayes risk under prior Q.

Minimax optimality. The worst risk function for a procedure A on parameter space O is defined as

Ry(A;©) = sup R(A;6).
6o

The procedure A, is minimax optimal if it achieves the minimum worst risk

The minimum worst risk is also called minimax risk within parameter space ©.



e Sufficient statistics. Given a statistical model P = {Pg : 8 € O} with sample space (X, F), we say
that T : X :— RF is a sufficient statistics for model P, if the conditional distribution X given T'(X)
is independent of . FN factorization criteria: pg(x) = g(T'(x);0)f(x) for some function g and f.

e Randomized statistical procedure (less important for now). Given a probability space (U,G,P), a
randomized statistical procedure is a map A : X x U — A. It’s risk function is

R(A;0) = EEgL(A(X,U), 8).

1.2 Biased coin flip

We observe a sequence of coin flips (X1,...,X,,) take values in {0,1}", where 0 encodes tails and 1 encodes
heads. We denote the probability for head to be 6 € [0,1].

e Statistical model. In this model, © = [0,1] encodes the space of head probability. For each 6 €
© = [0,1], Py is a probability distribution on the sample space X = {0,1}", such that for each

(x1,...,25) € {0,1}",

Po(X1 =a1,..., X, = x,) = 021 % (1 — )"~ 2 @,

e Loss function. We will take the action space to be A = © = [0,1]. There are many choice of loss
functions. For example, the square loss,

Li(a,0) = (a — 0)?, a,d € [0,1].
Another natural choice of loss function is the entropy loss

Ly(a,0) = 0log[f/a] + (1 — ) log[(1 — 0)/(1 — a)] a,0 €10,1]

e Statistical procedure/estimator. The most natural estimator is the sample mean

. 1<
91((B) = E ZSE’Z‘.
=1

Another estimator gives the sample mean with prior

n

ot o ).

i=1

for some m and a. We will see later that this estimator is natural when talking about Bayesian
estimator.

e Risk function. It is easier to analytically calculate the risk function under the square loss L. The risk
function for the sample mean estimator #; under square loss Lq gives

R(:,6) = EG{(iiXi AE %i@[(xi gy = 20=09),

n

The risk function for the other estimator gives

M) = (5 o 22 0] - 0) | = gt el 07+ 05

_ nd(1 —0) + (mf — a)?
n(n + m)? '

For a fixed estimator, the risk function is a function of 6.



e Bayes optimality. The natural prior for this problem gives the beta distribution Q ~ Beta(a, m — a),
with two parameters a and m. The density of beta distribution gives

Q(df) = 09(1 — 0)™=21{0 € [0, 1]}d6,

B(a,m — a)

where (it is better to get familiarized with the Beta/Gamma function calculus)

! a
B(a,b) = /O 0%(1 —0)bdg = m

The expected risk of estimator 6, under prior Q gives

RB(él-Q)zl/l 1 9a+1em_a+1d6:lB(a—kl,m—a—kl):a(m—a).
’ n Jo B(a,m—a) n

B(a,m —a) nm
The expected risk of estimator éam under prior Q gives
- 1 [*nb(1—6)+ (mh—a)? 1 a—a
Rp(0a,m; Q) —E/O (i + m)? B(a’m_a)e 0™~ %dl = f(n,a,m),

for some function f (exercise).

Claim (exercise): 6, is the Bayes estimator under the loss Ly and the prior Q ~ Beta(a, m — a).

e Minimax optimality. The worst risk of estimator 6, within space © = [0, 1] gives

A 0(1—6) 1
Ryi(6451]0,1]) = sup = —.
M (015 [0, 1]) B i

The worst risk of estimator 6, _,, within space © = [0,1] gives

- nd(1 —0) + (mf — a)?
Ry(0a m;[0,1]) = su
M( 5 [ ]) 06[01?1] n(n+m)2

= f(n’aab)v

for some function of f (exercise).

Claim (exercise): é\/ﬁ/27\/ﬁ is the minimax estimator under the loss L; and the parameter space [0, 1],

with risk
1

RM(éﬁ/z,ﬁ; 0,1]) = NS

e Sufficient statistics. Denote T'(z) = Y., x;. We claim that T'(z) is a sufficient statistics for this
model. Now let’s check T'(x) satisfies the definition of sufficient statistics. The conditional distribution
of [X|T(X) = k] gives

Po(X =2, T(X)=k 1 -
Po(X = alT(X) = ) = 5Pl ’:wl{;xi:k}

does not depend on §. To check the FN factorization criteria, the distribution of X = (Xi,...,X,)
gives
Po(X =) =0T® (1 - )" T,

This is in the form of FN factorization criteria for g(T;60) = 7 (1 — 0)"~T and f(x) = 1.

e Randomized statistical procedure. Let U ~ Unif([0, 1]) be a uniform random variable independent of
Pg. The randomized statistical procedure is defined as

AX,U) =U.



In words, no matter what we observe, we perform action generated by a uniform random number.
Why do we care about randomized procedure?

Claim (see Mackey’s notes 2015, lecture 10): under the loss function

L(a, 6) 0, if |0 —a| < q,
a’ = .
1, otherwise,

for o < 1/[2(n + 1)], this randomized statistical procedure is minimax optimal.

2 DMore on exponential families

Let v be some reference measure on R™, and T%,...,7Ty : R™ — R be measurable functions. We will write
T(x) = [T\ (x),...,Ti(z)]". Define partition functions

7(0) = / exp{(T(), 6) }v(dx),

¢(0) =log Z(6).
Let © CO, = {0 cR?: Z(0) < 0o}. Then we can define the statistical model P = {Pg : 8 € O}, where

Pg(dx) = % exp{(T'(z),0)}v(dx) = exp{(T'(x),0) — $(0)}v(dz).

This is called the exponential family in canonical form.
In homework 1, we are asked to prove that

¢

a0,
0%¢

00,00,

(0) =Eo[Ti(x)],

(6) =Cove[Ti(z), Tj(z)].

These are some of the most important properties of exponential families. The second identity implies that
V2¢(0) = 0, so that ¢ is a convex function in 8. Instead of proving these identities, we will show them using
some simple examples.

2.1 Examples: Biased coin flip

Recall the statistical model for biased coin flips gives (here instead of using 6 as the notation of parameter,
we use p)

This is not written in the form of canonical exponential family. To write it in the canonical form, we rewrite

PuX =) = exp { Y clogp + (n— Y ) log(1 )} = exp { Y loglp/ (1 p)] + nlos(1 )}

1=

Denote 6 = log[p/(1 — p)] to be the natural parameter, then p = €/(1 + ¢e?). Let T(z) = Y, z; be the
sufficient statistics, ¢(6) = nlog(1+e”) be the partition function, v(dx) = > ze{o1}n 0(x) to be the reference
measure. Then we write binomial distribution in its canonical form

Py(dz) = exp{(T'(z),0) — ¢(0)}v(dz).

Calculating the mean and variance of T'(z), we have

Eo[T(z)] = Eg{ ‘

(2

xz} =np=mne’/(1+¢?),
1

n



and
Varg[T'(x)] =Varg[z] = Eg[z?] — Eg[x]?

=) K (Z)p’“(l —p)" = n?p® = np(1 - p) = ne’ /(1 + %)%
k=0
Calculating the derivatives of the partition function ¢(8), we get

d nlog(l+ef)] =ne? /(1 +¢%),

#0) = =51

and

¢"(0) = %[nee/(l + e =ne? /(1 + €)%



