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1 Outline

1.1 Big picture

Recall that we are studying information-theoretic lower bounds. For statistical decision problems, we wish
to give a lower bound on the (minimax) risk, and then find a procedure that satisfies the minimax risk. If
we have a lower bound and a procedure that achieves the lower bound, then we understand
the problem. In general, it is difficult to find procedures that are exactly minimax optimal, so we settle
for problems that are approximately minimax optimal.

Recall that for any prior () the minimax risk is larger than the Bayes risk:

Ry > R:(Q).
Le Cam’s method and Fano’s method are techniques for lower bounding the Bayes risk for certain choices

of the prior Q.

1.2 Today

Today we will look at the following
e An estimator that approximately achieves the minimax lower bound in sparse regression.
e A tail bound for the standard Gaussian

e An application of Stein’s unbiased risk estimator (SURE)

2 Sparse regression example

2.1 Minimax lower bound

Recall from section 4.3 of the lecture notes that we derived a following lower bound for the minimax risk of
the sparse regression problem.

where @ € Og(k) belongs to the set of k-sparse vectors (vectors with at most k non-zero entries). If A%, =

Di<nj<d A/ (nd), then we have

Theorem 1 (Minimax risk for sparse regression). Fir a design matriv A € R"*?, we let Pg = N(A0, 021),

ko?

RNI(GO(k)) Z COnAgv

log (d/k) . (1)



2.2 Achieving the lower bound with soft-thresholding

In this section, we will show that we can achieve the minimax lower bound in a simple case E Let A=1, €
R¥*4 and fix 02 = 1. We will consider the family of soft-thresholding estimators:

r— AN whenz > A\

Sx(x) =40 when |z| < A
r+ A when x < =X\
é)\(x) ={S\(®i)}i=1,..a (i.e. soft-threshold each coordinate)

Notice that this is a nonlinear estimator. It shrinks values toward zero and sets values smaller that A equal
to zero.

We will now compute the risk of this estimator under squared error loss. Since é(m)l depends only on z;.
it suffices to consider the case d = 1.

RO:(),0) = [(0a(6+ 2) - 0)°(:)ds
Notice that the first term of the integrand is:
(z+XN)? z2+0< -

(0r(0+2) —0)2 = 92 |24 6] < A
(z=XN)2 z+60> A\

Differentiating with respected to 6 under the integral sign gives:

OSW:%P(W+ZISA)S2@-

We conclude that the the risk is symmetric and increasing for 6 > 0.
Next, we apply SURE. Let gy(x) = 0x(z) — 2. Then %% = —I|z/<x. Plugging this into SURE:

Eg(0x(z) — 0)? = Eg[1 — 2% + g2 (2)?] =1 —2Ps(|z] < X\) + ga(2)?) = 1+ A% as 0 — oo

This implies that A )
R(Ox(-),0) < R(6x(-),0) + min(62, 1 + A?).

We now consider the risk at 8 =0

o

RE,0.0) = [(On2)P0(:)az =2 [ (= 220(2)d: = 2(1 = 9(3) = 20600,

Proposition 2.1 (Mill’s tail bound). Let Z ~ N(0,1). Let ¢ be the standard normal density Fort > 0

1 1 1
(; - tg)qb(t) <SP(Zz=t)< ;¢(t)~
Proof. The proof is deferred to a future section. O

Using this proposition, we have that

R(B:(),0) < 256(0).

1See section 2.7 of Iain Johnstone’s Gaussian Estimation



Choose \g = /2log(d). Then

R(0x,(+),0) < 1/d + (2log(d) + 1) min(6?, 1)
Now consider the problem with general d. Using the above calculation, we have

R(0x,(-),0) <1+ (2log(d) + 1) En: min(0?,q) < 1+ (2log(d) + 1)k ~ 2klog(d)
=1

We conclude that the soft thresholding estimator is approximately minimax for this problem:

lim sup R(G)\O ()a 0)

=(C < 0.
dsoo R (Op)

3 Mill’s tail bound for a Gaussian

Proof. We will only show the upper bound.
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