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1 Overview

The main task of estimation theory is to compare the quality of estimators using risk function. Bayes risk
and minimax risk are summarization of the risk function, and they are standard ways to compare the quality
of estimators.

However, sometimes the statistical model is too complex (especially in high dimensional statistics) so that
it is hard to calculate the minimax risk for a specific statistical model, or it is hard to establish optimality
exhausting all the estimators, or in practice we are restricted to use all the estimators. There are in general
two general approaches to overcome this difficulty:

e Constrain the class of estimators. Examples include: unbiased, equi-variant, linear, robust, computa-
tionally tractable, differential private, etc.

e Discuss about asymptotic minimax or approximate minimax.

Developing these two general approaches for specific tasks is still an active research direction.
Chapter 4 of the lecture notes studies methods to establish approximate minimax. Chapter 5 of the
lecture notes establishes optimality within a constrained class of estimators: the unbiased estimators.

2 Theory of unbiased estimation (Chapter 5 of lecture notes)

The theory of unbiased estimation has two important ingredients:
e Establish UMVU estimator (using complete sufficient statistics).

e Establish approximate unbiased optimality (fisher information lower bound).

2.1 Uniformly minimal variance unbiased (UMVU) estimator

Consider statistical model P = {Pg : 0 € O}, and X ~ Pg. Suppose we would like to estimate g(@), and we
consider the loss function L(a,8) = (a — g(0))?.

Definition 1 (Unbiasedness). An estimator A is unbiased for g(0) if Eo[A(X)] = ¢(8).

Definition 2 (Uniformly minimal variance unbiased (UMVU) estimator). An unbiased estimator A for g(0)
is UMVU w.r.t. statistical model P for g(0), if for any unbiased estimator A, we have

Varg(A) = R(A,0) < R(A,0) = Varg(A), VO e O.

Remark 1. UMVU is a stronger criteria than unbiased minimaz. An UMVU estimator A is also minimaz
among unbiased estimators, but a minimax unbiased estimator may not have uniformly best risk function
among unbiased estimators.

There is a principled approach to find the UMVU, if we have an unbiased estimator A for ¢(0), and a
“complete” sufficient statistics T'(x).



Theorem 1. Let A be a “sufficiently nice” unbiased estimator for g(0). Let T'(x) be a “complete” sufficient

statistics. Define
A (t) = Eg[A(X)|T(X) = t].

Then A, (T (x)) is UMVTU for g(0).
Definition 3 (Complete statistics). A sufficient statistics T(X) is complete if: for any function f such that
Eo[f(T(X))] =0 for any 8, we have Po(f(T(X)) =0) =1 for any 6.
Remark 2. To check a sufficient statistics is complete is not an easy task. Here are some methods
e Exponential family (with some technical conditions).

e A model contains an exponential family (with some technical conditions).

o Check by definition.

2.1.1 Examples: proving completeness and deriving UMVU

Example 1 (Bernoulli random experiment). Consider X1,..., X, ~ Ber(f) for § € [0,1]. The joint distri-
bution of X = (X1,...,X,) gives

Po(X =x) = == %i(1 — )"~ 2ima @,

Since this is an exponential family, we know T'(x) = Y., z; is a complete sufficient statistics.
Now we consider the UMVU estimator for . Since X; is an unbiased estimator for 8, we have

1 n
Au(t) = Bg[X1|T(X) = 1] = ﬁz Eo[Xi|T(X) = 1] = (1/n)Eo[T(X)|T(X) = t] = t/n.
i=1
Hence the UMVU estimator for 0 gives A, (T'(x)) = T(x)/n=> ", x;/n.
Then we consider the UMVU estimator for §%. Naively we want to use the estimator A(T(zx)) =
(T'(z)/n)?. But this is not an unbiased estimator. To compute UMVU, first we need to come up with

an unbiased estimator for 2. It can be easily checked that A(x) = 1{z; = 2o = 1} is an unbiased estimator
for #2. To compute UMVU, we have

A(t) =Eg[1{X1 = Xo = 1}T(X) = t] = Po(X1 = Xo = 1|T(X) = t)
:P9<X1 — X, = LG:Xi :t—2)/P9(iXi :t)
:92(n__;)9*4(1—9Y“*1{t2iﬂ/[(?)&%l——ﬁ"‘ﬂ

tf
—t(t — 1)/[n(n — 1)].

Hence the UMVU estimator for 6% gives A,(T(x)) = T(x)(T(x) — 1)/[n(n — 1)]. This estimator intuitively
makes sense, since it is very similar to the naive guess A(T(x)) = (T(z)/n)? (so that we are more confident
that our calculus is correct).

Example 2 (Uniform distribution). Consider Xi,...,X, ~ Unif(0,0) for some 6§ € (0,00). The joint
distribution of X gives
po(x) = (1/0")1{max z; < 6}.

It is easy to see that T'(x) = max; x; is a sufficient statistics. But the uniform distribution family is not an
exponential family, we cannot say T'(x) is the complete sufficient statistics directly.

To check T'(x) is complete, we check the definition of completeness directly. The probability of event
{T(x) < u} under measure Py gives (for u < 0)

Pg(m;fiXXi <u)=(u/0)".



Taking derivative with respect to u, the density of T'(x) under measure Py gives
qo(u) = n(u™1/0™)1{u < 6}.

For any function f such that E¢[f(T(X))] = 0 for any 6 € (0, 00), we have

Bl (1)) = [ " go(w)g()tu = / w6 g(u)du = O,
which gives
/00 u" " tg(u)du =0
for any 6 € (0, 00). Taking derivative with respect to 6, we have
0" ~g(0) =0,
which gives g(6) =0 for § € (0,00). Hence T(x) = max; x; is complete.
To find the UMVU for parameter 6, note that 2X; gives an unbiased estimator for . We would like to

compute

A*(t) = 2E9[X1‘ maxXl = t]
The conditional distribution of [X;|max; X; = t] gives

n

-1
[X1| max X; =] ~ lét + Unif (0, ),
7 n n

where §; is the Dirac delta measure at location t. To see this, we compute Py(X; < 2, max; X; > t):
x
Py (Xl < z,max X; > t) :/ pg(xl)Pg(maxXi > t‘Xl = xl)dxl
K3 0 K3
:/ po(l’l) {Pg(maxXz = X1’X1 = l’l)l{t S ifl} + Pg(maxXl Z t’Xl = 1’1)1{t Z 1'1}:| dxl
0 ? i

/OZ po (1) [Pg(I?Zélz}(Xi < a:l)l{t <z}+ PQ(I?Z%XXi > t)l{t > xl}} dzy

[ e (= () ez sfan
:/;;Kxgl>n_ll{t < xl}}dm 4 W(l B <§)n—1)

Taking derivative with respect to x, ¢ gives the density for (X;,T(X)) at (z,t), which gives (for 0 < z,t < 0)

tn—l n—2

t
on o(t—x)+ (n—1) o
Note the density of T(X) gives qg(t) = (nt"~1/6™)1{t < 6}. Hence the conditional density [X;| max; X; = ]

gives
(n—1)
n

ax,,7(x) (2, t) = —0,0:Pg (Xl < z,max X; > t) = 1{0 <z < t}.

1 1
Wy jrx) (@ft) = ~6(t — ) + JHo<z <t}

Given this result, we have
A, (t) =2E¢[X1| max X; = t]
K3

1 -1 [
—afbee L [
n n o ¢

n+1
n
The UMVU is A,(T(x)) = [(n + 1)/n] max; z;, an augmented max of z;’s.

t.



2.1.2 Example: minimal sufficient but not complete statistics

Definition 4. A sufficient statistics T(x) is minimal for the model (Pg)oco if, for any other sufficient
statistics T'(x), there exists a measurable function f such that T(x) = f(T'(x)) for all x.

Lemma 1. T(x) a minimal sufficient statistics if and only if the following holds for all x,y
T(x) =T(y) © 3Cqy,s.t.,pe(x) = Cgype(y), V0 € O.

Example 3 (Minimal sufficient but not complete statistics). Consider the example X7, ..., X,, ~ Unif([6, 0+
1]) for # € R. Then T'(x) = (max; x;, min; ;) is a minimal sufficient statistics, but not complete.
Tt is easy to see that T is sufficient. To show it is minimal, for any @,y such that T'(x) = T'(y), we have

po(x) = 1{# < minz; <maxax; <O+ 1} =1{0 < miny; < maxy; <0+ 1} = pe(y).
For any @,y such that
po(x) = 1{0 <minz; <maxz;, <O+ 1} = Cq ypo(y) = Czy1{f < miny; < maxy, <0+ 1},

for any 6, we must have C , = 1 and min; x; = min; y; and max; z; = max; y;. Hence T is minimal.
To show T is not complete, let ¢g(T(x)) = max; x; — min; x;, it is easy to see that Eg[g(T(x))] is
independent of . But g is not identically a constant. Hence T' is not complete.

2.2 Cramer-Rao lower bound

We consider sufficiently smooth, positive, and fast decaying density pg ().

Definition 5 (Fisher information). Define £¢(x) = Vglogpe(xz) = Vepe(x)/pe(x). The fisher information
matriz is defined as ) .
Ir(0) = Eg[lo(X )l (X)T].

which can be also written as
Ip = /Veloe(-’B)Vepa(ffC)T/IOa(CE)d?c = —/Pe(w)vf) log pe (x)da.
Theorem 2 (Cramer-Rao lower bound). For any sufficiently good unbiased estimator é, define

M = / (O(z) — 0)(B(x) — 0)pp () da.

Then we have
M = 1p(0)".

Proof. For any u, v, we have
(w.0) = [ tlo(). v)(6(e) - 6.uipo(w)de <[ [ (la(a),v)*poe)de] - | [(6(z) - 6,u)po()da
=(v,Ip(0)v){u, Mu),

A special choice of w and v gives the desired inequality.



2.2.1 Example: computing fisher information matrix

Example 4 (Bernoulli random experiments). Let Xi,..., X, ~ Ber(f). The fisher information for their
joint distribution is n times the fisher information of a single random variable.
The density pg(z) = 6%(1 — 6)1 =%, hence

lo(z) =d/(df)[xlogh + (1 —x)log(l—0)| =2/0 — (1 —x)/(1 —0) =z/[(1 —0)] —1/(1 —0).

The fisher information for a single Bernoulli distribution gives

=Eo[lo(X)?] = Eg[[X/[0(1 - 0)] — 1/(1 - 6))°]

=Eo[X?/[0(1 - 0)]* +1/(1 - 6)* — 2X/[6(1 — 6)?]]

=0/[0(1—0))> +1/(1 —0)* —20/[0(1 — 0)?]
1/[0(1 —0)?] +1/(1 —60)* —2/(1 — 6)*

1/[0(1 - 0)].

The fisher information for n independent Bernoulli random variable gives I ,(6) = n/[6(1 — 6)]. Therefore,

Ir1(6)

>

for any unbiased estimator é, the risk lower bound gives
R(0,0) > 1/Tp (0) = 0(1 — 0)/n.

The sample mean estimator éU(m) =Y""_, x;i/n achieves this lower bound at any 6, hence the sample mean
estimator is UMVU.

Remember that the minimax estimator on 6 € [0,1] is O (x) = (> xi+/n/2)/(n+ y/n), and it has
better worst risk than the mean estimator 6y (). But the minimax estimator /() is not unbiased. In the
class of unbiased estimators, éU(m) is minimax optimal.

2.2.2 An important property of Fisher information (Stats 300B)

Theorem 3 (Asymptotic normality of maximum likelihood estimator). Let Xi..., X, ~ pg(z) and let
O(x) = argmaxg y ., log pg(x;). Then we have

V() — 8) — N(0,Ip(6)71)
weakly as n — oco.

This theorem says that, maximum likelihood estimator asymptotically achieves Cramer-Rao lower bound.



