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1 Overview

The main task of estimation theory is to compare the quality of estimators using risk function. Bayes risk
and minimax risk are summarization of the risk function, and they are standard ways to compare the quality
of estimators.

However, sometimes the statistical model is too complex (especially in high dimensional statistics) so that
it is hard to calculate the minimax risk for a specific statistical model, or it is hard to establish optimality
exhausting all the estimators, or in practice we are restricted to use all the estimators. There are in general
two general approaches to overcome this difficulty:

• Constrain the class of estimators. Examples include: unbiased, equi-variant, linear, robust, computa-
tionally tractable, differential private, etc.

• Discuss about asymptotic minimax or approximate minimax.

Developing these two general approaches for specific tasks is still an active research direction.
Chapter 4 of the lecture notes studies methods to establish approximate minimax. Chapter 5 of the

lecture notes establishes optimality within a constrained class of estimators: the unbiased estimators.

2 Theory of unbiased estimation (Chapter 5 of lecture notes)

The theory of unbiased estimation has two important ingredients:

• Establish UMVU estimator (using complete sufficient statistics).

• Establish approximate unbiased optimality (fisher information lower bound).

2.1 Uniformly minimal variance unbiased (UMVU) estimator

Consider statistical model P = {Pθ : θ ∈ Θ}, and X ∼ Pθ. Suppose we would like to estimate g(θ), and we
consider the loss function L(a,θ) = (a− g(θ))2.

Definition 1 (Unbiasedness). An estimator A is unbiased for g(θ) if Eθ[A(X)] = g(θ).

Definition 2 (Uniformly minimal variance unbiased (UMVU) estimator). An unbiased estimator A for g(θ)
is UMVU w.r.t. statistical model P for g(θ), if for any unbiased estimator Ã, we have

Varθ(A) = R(A,θ) ≤ R(Ã,θ) = Varθ(Ã), ∀θ ∈ Θ.

Remark 1. UMVU is a stronger criteria than unbiased minimax. An UMVU estimator A is also minimax
among unbiased estimators, but a minimax unbiased estimator may not have uniformly best risk function
among unbiased estimators.

There is a principled approach to find the UMVU, if we have an unbiased estimator A for g(θ), and a
“complete” sufficient statistics T (x).
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Theorem 1. Let A be a “sufficiently nice” unbiased estimator for g(θ). Let T (x) be a “complete” sufficient
statistics. Define

A?(t) = Eθ[A(X)|T (X) = t].

Then A?(T (x)) is UMVU for g(θ).

Definition 3 (Complete statistics). A sufficient statistics T (X) is complete if: for any function f such that
Eθ[f(T (X))] = 0 for any θ, we have Pθ(f(T (X)) = 0) = 1 for any θ.

Remark 2. To check a sufficient statistics is complete is not an easy task. Here are some methods

• Exponential family (with some technical conditions).

• A model contains an exponential family (with some technical conditions).

• Check by definition.

2.1.1 Examples: proving completeness and deriving UMVU

Example 1 (Bernoulli random experiment). Consider X1, . . . , Xn ∼ Ber(θ) for θ ∈ [0, 1]. The joint distri-
bution of X = (X1, . . . , Xn) gives

Pθ(X = x) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi .

Since this is an exponential family, we know T (x) =
∑n
i=1 xi is a complete sufficient statistics.

Now we consider the UMVU estimator for θ. Since X1 is an unbiased estimator for θ, we have

A?(t) = Eθ[X1|T (X) = t] =
1

n

n∑
i=1

Eθ[Xi|T (X) = t] = (1/n)Eθ[T (X)|T (X) = t] = t/n.

Hence the UMVU estimator for θ gives A?(T (x)) = T (x)/n =
∑n
i=1 xi/n.

Then we consider the UMVU estimator for θ2. Naively we want to use the estimator A(T (x)) =
(T (x)/n)2. But this is not an unbiased estimator. To compute UMVU, first we need to come up with
an unbiased estimator for θ2. It can be easily checked that A(x) = 1{x1 = x2 = 1} is an unbiased estimator
for θ2. To compute UMVU, we have

A?(t) =Eθ[1{X1 = X2 = 1}|T (X) = t] = Pθ(X1 = X2 = 1|T (X) = t)

=Pθ
(
X1 = X2 = 1,

n∑
i=3

Xi = t− 2
)
/Pθ

( n∑
i=1

Xi = t
)

=θ2

(
n− 2

t− 2

)
θt−2(1− θ)n−t1{t ≥ 2}/

[(n
t

)
θt(1− θ)n−t

]
=t(t− 1)/[n(n− 1)].

Hence the UMVU estimator for θ2 gives A?(T (x)) = T (x)(T (x)− 1)/[n(n− 1)]. This estimator intuitively
makes sense, since it is very similar to the naive guess A(T (x)) = (T (x)/n)2 (so that we are more confident
that our calculus is correct).

Example 2 (Uniform distribution). Consider X1, . . . , Xn ∼ Unif(0, θ) for some θ ∈ (0,∞). The joint
distribution of X gives

pθ(x) = (1/θn)1{max
i
xi ≤ θ}.

It is easy to see that T (x) = maxi xi is a sufficient statistics. But the uniform distribution family is not an
exponential family, we cannot say T (x) is the complete sufficient statistics directly.

To check T (x) is complete, we check the definition of completeness directly. The probability of event
{T (x) ≤ u} under measure Pθ gives (for u ≤ θ)

Pθ(max
i
Xi ≤ u) = (u/θ)n.
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Taking derivative with respect to u, the density of T (x) under measure Pθ gives

qθ(u) = n(un−1/θn)1{u ≤ θ}.

For any function f such that Eθ[f(T (X))] = 0 for any θ ∈ (0,∞), we have

Eθ[f(T (X))] =

∫ θ

0

qθ(u)g(u)du =

∫ θ

0

nun−1/θng(u)du = 0,

which gives ∫ θ

0

un−1g(u)du = 0

for any θ ∈ (0,∞). Taking derivative with respect to θ, we have

θn−1g(θ) = 0,

which gives g(θ) = 0 for θ ∈ (0,∞). Hence T (x) = maxi xi is complete.
To find the UMVU for parameter θ, note that 2X1 gives an unbiased estimator for θ. We would like to

compute
A?(t) = 2Eθ[X1|max

i
Xi = t].

The conditional distribution of [X1|maxiXi = t] gives

[X1|max
i
Xi = t] ∼ 1

n
δt +

n− 1

n
Unif(0, t),

where δt is the Dirac delta measure at location t. To see this, we compute Pθ(X1 ≤ x,maxiXi ≥ t):

Pθ
(
X1 ≤ x,max

i
Xi ≥ t

)
=

∫ x

0

pθ(x1)Pθ
(

max
i
Xi ≥ t

∣∣∣X1 = x1

)
dx1

=

∫ x

0

pθ(x1)
[
Pθ
(

max
i
Xi = X1

∣∣∣X1 = x1

)
1{t ≤ x1}+ Pθ

(
max
i
Xi ≥ t

∣∣∣X1 = x1

)
1{t ≥ x1}

]
dx1

=

∫ x

0

pθ(x1)
[
Pθ
(

max
i≥2

Xi ≤ x1

)
1{t ≤ x1}+ Pθ

(
max
i≥2

Xi ≥ t
)
1{t ≥ x1}

]
dx1

=

∫ x

0

1

θ

[(x1

θ

)n−1

1{t ≤ x1}+
(

1−
( t
θ

)n−1)
1{t ≥ x1}

]
dx1

=

∫ x

0

1

θ

[(x1

θ

)n−1

1{t ≤ x1}
]
dx1 +

min{x, t}
θ

(
1−

( t
θ

)n−1)
.

Taking derivative with respect to x, t gives the density for (X1, T (X)) at (x, t), which gives (for 0 ≤ x, t ≤ θ)

qX1,T (X)(x, t) = −∂x∂tPθ
(
X1 ≤ x,max

i
Xi ≥ t

)
=
tn−1

θn
δ(t− x) + (n− 1)

tn−2

θn
1{0 ≤ x ≤ t}.

Note the density of T (X) gives qθ(t) = (ntn−1/θn)1{t ≤ θ}. Hence the conditional density [X1|maxiXi = t]
gives

qX1|T (X)(x|t) =
1

n
δ(t− x) +

(n− 1)

n

1

t
1{0 ≤ x ≤ t}.

Given this result, we have
A?(t) =2Eθ[X1|max

i
Xi = t]

=2
[ 1

n
t+

n− 1

n

∫ t

0

x1

t
dx1

]
=
n+ 1

n
t.

The UMVU is A?(T (x)) = [(n+ 1)/n] maxi xi, an augmented max of xi’s.
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2.1.2 Example: minimal sufficient but not complete statistics

Definition 4. A sufficient statistics T (x) is minimal for the model (Pθ)θ∈Θ if, for any other sufficient
statistics T ′(x), there exists a measurable function f such that T (x) = f(T ′(x)) for all x.

Lemma 1. T (x) a minimal sufficient statistics if and only if the following holds for all x,y

T (x) = T (y)⇔ ∃Cx,y, s.t., pθ(x) = Cx,ypθ(y),∀θ ∈ Θ.

Example 3 (Minimal sufficient but not complete statistics). Consider the example X1, . . . , Xn ∼ Unif([θ, θ+
1]) for θ ∈ R. Then T (x) = (maxi xi,mini xi) is a minimal sufficient statistics, but not complete.

It is easy to see that T is sufficient. To show it is minimal, for any x,y such that T (x) = T (y), we have

pθ(x) = 1{θ ≤ min
i
xi ≤ max

i
xi ≤ θ + 1} = 1{θ ≤ min

i
yi ≤ max

i
yi ≤ θ + 1} = pθ(y).

For any x,y such that

pθ(x) = 1{θ ≤ min
i
xi ≤ max

i
xi ≤ θ + 1} = Cx,ypθ(y) = Cx,y1{θ ≤ min

i
yi ≤ max

i
yi ≤ θ + 1},

for any θ, we must have Cx,y = 1 and mini xi = mini yi and maxi xi = maxi yi. Hence T is minimal.
To show T is not complete, let g(T (x)) = maxi xi − mini xi, it is easy to see that Eθ[g(T (x))] is

independent of θ. But g is not identically a constant. Hence T is not complete.

2.2 Cramer-Rao lower bound

We consider sufficiently smooth, positive, and fast decaying density pθ(x).

Definition 5 (Fisher information). Define ˙̀
θ(x) = ∇θ log pθ(x) = ∇θpθ(x)/pθ(x). The fisher information

matrix is defined as
IF(θ) = Eθ[ ˙̀

θ(X) ˙̀
θ(X)T].

which can be also written as

IF =

∫
∇θpθ(x)∇θpθ(x)T/pθ(x)dx = −

∫
pθ(x)∇2

θ log pθ(x)dx.

Theorem 2 (Cramer-Rao lower bound). For any sufficiently good unbiased estimator θ̂, define

M =

∫
(θ̂(x)− θ)(θ̂(x)− θ)Tpθ(x)dx.

Then we have
M � IF(θ)−1.

Proof. For any u,v, we have

〈u,v〉 =

∫
〈 ˙̀
θ(x),v〉〈θ̂(x)− θ,u〉pθ(x)dx ≤

[ ∫
〈 ˙̀
θ(x),v〉2pθ(x)dx

]
·
[ ∫
〈θ̂(x)− θ,u〉2pθ(x)dx

]
=〈v, IF(θ)v〉〈u,Mu〉,

A special choice of u and v gives the desired inequality.
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2.2.1 Example: computing fisher information matrix

Example 4 (Bernoulli random experiments). Let X1, . . . , Xn ∼ Ber(θ). The fisher information for their
joint distribution is n times the fisher information of a single random variable.

The density pθ(x) = θx(1− θ)1−x, hence

˙̀
θ(x) = d/(dθ)[x log θ + (1− x) log(1− θ)] = x/θ − (1− x)/(1− θ) = x/[θ(1− θ)]− 1/(1− θ).

The fisher information for a single Bernoulli distribution gives

IF,1(θ) =Eθ[ ˙̀
θ(X)2] = Eθ[[X/[θ(1− θ)]− 1/(1− θ)]2]

=Eθ[X
2/[θ(1− θ)]2 + 1/(1− θ)2 − 2X/[θ(1− θ)2]]

=θ/[θ(1− θ)]2 + 1/(1− θ)2 − 2θ/[θ(1− θ)2]

=1/[θ(1− θ)2] + 1/(1− θ)2 − 2/(1− θ)2

=1/[θ(1− θ)].

The fisher information for n independent Bernoulli random variable gives IF,n(θ) = n/[θ(1− θ)]. Therefore,

for any unbiased estimator θ̂, the risk lower bound gives

R(θ̂, θ) ≥ 1/IF,n(θ) = θ(1− θ)/n.

The sample mean estimator θ̂U (x) =
∑n
i=1 xi/n achieves this lower bound at any θ, hence the sample mean

estimator is UMVU.
Remember that the minimax estimator on θ ∈ [0, 1] is θ̂M (x) = (

∑n
i=1 xi +

√
n/2)/(n+

√
n), and it has

better worst risk than the mean estimator θ̂U (x). But the minimax estimator θ̂M (x) is not unbiased. In the

class of unbiased estimators, θ̂U (x) is minimax optimal.

2.2.2 An important property of Fisher information (Stats 300B)

Theorem 3 (Asymptotic normality of maximum likelihood estimator). Let X1 . . . , Xn ∼ pθ(x) and let

θ̂(x) = arg maxθ
∑n
i=1 log pθ(xi). Then we have

√
n(θ̂(x)− θ)→ N (0, IF(θ)−1)

weakly as n→∞.

This theorem says that, maximum likelihood estimator asymptotically achieves Cramer-Rao lower bound.
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