
Stats 300b: Theory of Statistics Winter 2019

Lecture 2 – January 11
Lecturer: John Duchi Scribe: Xinkun Nie

� Warning: these notes may contain factual errors

Reading: VDV Chapter 2

1. Portmanteau and Prohorov’s Theorems

2. Delta method and examples

1 Convergence recap

Definition 1.1. A sequence of random variables {Xn} converges in probability to a random variable X,
denoted Xn

p
→ X, if P(d(Xn, X) > ε)→ 0 for all ε > 0.

Definition 1.2. A sequence of random variables {Xn} converges in distribution to a random variable X,

denoted Xn
d
→ X, if P(Xn ≤ x)→ P(X ≤ x) for all continuity points x of the function x 7→ P(X ≤ x). This is

equivalent to the assertion that E f (Xn)→ E f (X) for all bounded continuous functions f .

Theorem 1. (Slutsky’s Theorem).

1. If d(Xn,Yn)
p
→ 0, Xn

d
→ X, then Yn

d
→ X.

2. If Xn
d
→ X, Yn

d
→ c, then (Xn,Yn)

d
→ (X, c).

Remark If the limiting distribution of Yn is not a constant, then the second part of the theorem does not
necessarily hold. Because when Y is random and (X, c) is replaced by (X,Y), we must now specify the joint
law of (X,Y).

Definition 1.3. A collection {Xα}α∈A is uniformly tight if or ∀ε > 0, ∃ M < ∞ such that

sup
α∈A

P(||Xα||≥ M) ≤ ε

Remark

1. A single random vector is tight

2. If Xn
d
→ X then {Xn} is uniformly tight. To show this, let x be a continuity point of P(||X||≥ x), then

P(||Xn||≥ x)→ P(||X||≥ x). Choose x large enough such that P(||X||≥ x) is small.

Theorem 2. (Prohorov’s theorem)
A collection of random vectors {Xα}α∈A is uniformly tight if and only if it is sequentially compact for

weak convergence. i.e. for all sequences {Xn}n∈N ⊂ {Xα}α∈A, there exists a subsequence nk and a random

vector X such that Xnk

d
→ X.
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Remark In Rd this is Helley’s selection theorem (i.e. CDFs Fn have convergent subsequences.)

Example 1: (”Easy” way to get uniformly tightness: Markov’s inequality)
Let {Xα}α∈A satisfy E(‖Xα‖p) ≤ k < ∞, for all α ∈ A and some p > 0. Then {Xα}α∈A is uniformly tight.

Proof By markov inequality,

P(‖Xα‖≥ M) ≤
E(‖Xα‖p))

Mp ≤
k

Mp → 0

as M → ∞ �

♣

Theorem 3. (Portmanteau Theorem). Let Xn, X be random vectors. The following are equivalent.

1. Xn converges in distribution to X

2. E( f (Xn))→ E( f (X)) for all bounded and continuous f

3. E( f (Xn))→ E( f (X)) for all one-Lipschitz f with f ∈ [0, 1]

4. lim infn→∞ E( f (Xn)) ≥ E( f (X)) for non-negative and continuous f.

5. lim infn→∞ P(Xn ∈ O) ≥ P(X ∈ O) for all open sets O

6. lim supn→∞ P(Xn ∈ C) ≤ P(X ∈ C) for all closed sets C

7. limn→∞ P(Xn ∈ B) = P(X ∈ B) for all sets B such that P(X ∈ ∂B) = 0

Remark We call a collection of functions F a determining class if E( f (Xn)) → E( f (X)) for all f ∈ F if

and only if Xn
d
→ X . For example, from the theory of characteristic functions, we have a determining class

F = {x 7→ eit>x : t ∈ Rd}.

Example 2: Fourier transforms or characteristic functions. Let i =
√
−1 and ft(x) = exp

(
it>x

)
for t ∈ Rd.

Then
E( ft(Xn))→ E( ft(X))∀t ∈ Rd ⇐⇒ Xn

d
→ X.

♣

2 Delta Method

Suppose we have a sequence of statistics Tn that estimate a parameter θ and we know that rn(Tn−θ) converges
in distribution to T, and rn → ∞. Intuitively, we think of rn as the rate of convergence. Suppose a function
φ is smooth in the neighborhood of θ. Is it possible to say anything about φ(Tn) − φ(θ)?

Theorem 4. (Delta Method). Let rn → ∞ and φ : Rd → Rk be differentiable at θ and assume that

rn(Tn − θ)
d
→ T for some random vector T . Then

1. rn(φ(Tn) − φ(θ)) converges in distribution to φ′(θ)T
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2. rn(φ(Tn) − φ(θ)) − rnφ
′(θ)(Tn − θ) converges in probability to 0

Here φ′(θ) ∈ Rk×d is the Jacobian Matrix [φ′(θ)]i j =
∂φi(θ)
∂θ j

Proof By the definition of the derivative, we have that

φ(t) = φ(θ) + φ′(θ)(t − θ) + o(‖t − θ‖),

i.e.
φ(t) = φ(θ) + φ′(θ)(t − θ) + R(‖t − θ‖) (1)

where limh→0
R(h)

h = 0. Since rn(Tn − θ) converges in distribution, we know that rn(Tn − θ) = Op(1),
which implies that rn‖Tn − θ‖ = Op(1). We also have that ‖Tn − θ‖ = op(1), which implies R(‖Tn − θ‖) =

op(‖Tn − θ‖). Thus

rnR(‖Tn − θ‖) = rnop(‖Tn − θ‖) = op(rn‖Tn − θ‖) = op(Op(1)) = op(1).

Using this along with (1), we have the second part of the theorem. Noting that rnφ
′(θ)(Tn − θ)

d
→ φ′(θ)T ,

and applying Slutsky’s theorem, we get the first part as well. �

Example 3: Let Xi
iid
∼ P, E(X) = θ 6= 0, Cov(X) = Γ and φ(h) = 1

2‖h‖
2. Then

√
n
(1
n

k∑
i=1

Xi − θ
) d
→ N(0,Γ)

By the Delta Method, we have

√
n
(1
2

∥∥∥∥∥1
n

∑
Xi

∥∥∥∥∥2
−

1
2
‖θ‖2

) d
→ N(0, θT Γθ).

Note if ‖θ‖2= 0, we actually have

√
n
(1
2

∥∥∥∥∥1
n

∑
Xi

∥∥∥∥∥2
−

1
2
‖θ‖2

) p
→ 0.

So when θ = 0, we would like to somehow adjust rn(φ(Tn)−φ(θ)) so that we get convergence to a non-trivial
distribution. This is a precursor to the next section. ♣

Example 4: (Sample Variance). Let X1, . . . , Xn be i.i.d with finite fourth moment. Let X̄n = n−1 ∑n
i=1 Xi,

S 2
n = n−1 ∑n

i=1(Xi − X̄n)2, and X2
n = n−1 ∑n

i=1 X2
i . We want weak convergence of

√
n(S 2

n −σ
2). First note that

S 2
n = X2

n − (X̄n)2 = φ(X̄n, X2
n), where φ(x, y) = y − x2. With αi = EXi, one can check that

√
n
X̄n

X2
n

 − (
α1
α2

) d
→ N

(
0,

(
α2 − α

2
1 α3 − α1α2

α3 − α1α2 α4 − α
2
2

))
.

Then by the Delta Method, we obtain

√
n(S 2

n − σ
2)

d
→ N(0, α4 − α

2
2).

♣
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3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if φ′(θ) = 0, just look at higher order approxima-
tions. Usually in such settings, φ : Rd → R, and so φ′(θ) = ∇φ(θ) = 0 ∈ Rd.

Theorem 5. (Second Order Delta Method). Let φ : Rd → R be twice differentiable at θ, and rn(Tn−θ)
d
→ T.

Then if ∇φ(θ) = 0, we have

r2
n(φ(Tn) − φ(θ))

d
→

1
2

T T
∇

2φ(θ)T.

Proof By definition,

φ(t) = φ(θ) + ∇φ(θ)T (t − θ) +
1
2

(t − θ)T
∇

2φ(θ)(t − θ) + R(‖t − θ‖),

where R(h) = o(‖h‖2). Since ∇φ(θ) = 0, we actually have

φ(t) = φ(θ) +
1
2

(t − θ)T
∇

2φ(θ)(t − θ) + R(‖t − θ‖). (2)

Note r2
nR(‖Tn − θ‖) = r2

nop(‖Tn − θ‖
2) = op(‖rn(Tn − θ)‖2). Since rn(Tn − θ) converges in distribution, so

does ‖rn(Tn − θ)‖2, and so ‖rn(Tn − θ)‖2 = Op(1). Thus

r2
nR(‖Tn − θ‖) = op(Op(1)) = op(1). (3)

Now by the continuous mapping theorem, we have that

1
2

(rn(Tn − θ))T
∇

2φ(θ)(rn(Tn − θ))
d
→

1
2

T T
∇

2φ(θ)T. (4)

So combining (2), (3), (4) and using Slutsky’s lemma, we get the desired convergence in distribution. �

Example 5: Estimating the parameter of a Bernoulli random variable.
Suppose θ ∈ (0, 1), Xi ∼ Bernoulli(θ). To estimate θ, we may use the sample mean θ̂n = n−1 ∑n

i=1 Xi. Clearly,
Eθ̂n = θ, Var(θ̂n) =

θ(1−θ)
n . Instead of using mean squared error to measure the performance of θ̂n, let us use

the Kullback-Leibler (KL) divergence (or the log loss). This is

DKL(P ‖ Q) =

∫
dP log

(
dP
dQ

)
.

Let Pt = Bernoulli(t), t ∈ [0, 1]. So

DKL(Pt ‖ Pθ) = t log
t
θ

+ (1 − t) log
1 − t
1 − θ

.

Let φ(t) = DKL(Pt ‖ Pθ). Then

φ′(t) = log
t

1 − t
− log

θ

1 − θ
.

Note φ′(θ) = 0. So we need the second derivative:

φ′′(t) =
1
t

+
1

1 − t
=

1
t(1 − t)

,

and so φ′′(θ) = 1
θ(1−θ) . So by the second order Delta Method,

nDKL(Pθ̂n
‖ Pθ)

d
→

1
2
χ2

(1).

♣
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