Stats 300b: Theory of Statistics

Winter 2019

Lecture 2 – January 11

Lecturer: John Duchi

Scribe: Xinkun Nie

Warning: these notes may contain factual errors

Reading: VDV Chapter 2

- 1. Portmanteau and Prohorov's Theorems
- 2. Delta method and examples

1 Convergence recap

Definition 1.1. A sequence of random variables $\{X_n\}$ converges in probability to a random variable X, denoted $X_n \xrightarrow{p} X$, if $P(d(X_n, X) > \varepsilon) \to 0$ for all $\varepsilon > 0$.

Definition 1.2. A sequence of random variables $\{X_n\}$ converges in distribution to a random variable X, denoted $X_n \xrightarrow{d} X$, if $P(X_n \le x) \rightarrow P(X \le x)$ for all continuity points x of the function $x \mapsto P(X \le x)$. This is equivalent to the assertion that $\mathbb{E}f(X_n) \rightarrow \mathbb{E}f(X)$ for all bounded continuous functions f.

Theorem 1. (Slutsky's Theorem).

- 1. If $d(X_n, Y_n) \xrightarrow{p} 0$, $X_n \xrightarrow{d} X$, then $Y_n \xrightarrow{d} X$.
- 2. If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c$, then $(X_n, Y_n) \xrightarrow{d} (X, c)$.

Remark If the limiting distribution of Y_n is not a constant, then the second part of the theorem does not necessarily hold. Because when Y is random and (X, c) is replaced by (X, Y), we must now specify the joint law of (X, Y).

Definition 1.3. A collection $\{X_{\alpha}\}_{\alpha \in A}$ is uniformly tight if or $\forall \epsilon > 0, \exists M < \infty$ such that

$$\sup_{\alpha \in \mathcal{A}} \mathbb{P}(||X_{\alpha}|| \geq M) \leq \epsilon$$

Remark

- 1. A single random vector is tight
- 2. If $X_n \xrightarrow{d} X$ then $\{X_n\}$ is uniformly tight. To show this, let x be a continuity point of $\mathbb{P}(||X|| \ge x)$, then $\mathbb{P}(||X_n|| \ge x) \to \mathbb{P}(||X|| \ge x)$. Choose x large enough such that $\mathbb{P}(||X|| \ge x)$ is small.

Theorem 2. (Prohorov's theorem)

A collection of random vectors $\{X_{\alpha}\}_{\alpha \in A}$ is uniformly tight if and only if it is sequentially compact for weak convergence. i.e. for all sequences $\{X_n\}_{n \in \mathbb{N}} \subset \{X_{\alpha}\}_{\alpha \in A}$, there exists a subsequence n_k and a random vector X such that $X_{n_k} \xrightarrow{d} X$. **Remark** In \mathbb{R}^d this is Helley's selection theorem (i.e. CDFs F_n have convergent subsequences.)

Example 1: ("Easy" way to get uniformly tightness: Markov's inequality) Let $\{X_{\alpha}\}_{\alpha \in A}$ satisfy $\mathbb{E}(||X_{\alpha}||^p) \le k < \infty$, for all $\alpha \in A$ and some p > 0. Then $\{X_{\alpha}\}_{\alpha \in A}$ is uniformly tight.

Proof By markov inequality,

$$\mathbb{P}(||X_{\alpha}|| \geq M) \leq \frac{\mathbb{E}(||X_{\alpha}||^{p}))}{M^{p}} \leq \frac{k}{M^{p}} \to 0$$

as $M \to \infty$

÷

Theorem 3. (Portmanteau Theorem). Let X_n , X be random vectors. The following are equivalent.

- 1. X_n converges in distribution to X
- 2. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ for all bounded and continuous f
- 3. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ for all one-Lipschitz f with $f \in [0, 1]$
- 4. $\liminf_{n\to\infty} \mathbb{E}(f(X_n)) \ge E(f(X))$ for non-negative and continuous f.
- 5. $\liminf_{n\to\infty} \mathbb{P}(X_n \in O) \ge \mathbb{P}(X \in O)$ for all open sets O
- 6. $\limsup_{n\to\infty} \mathbb{P}(X_n \in C) \leq \mathbb{P}(X \in C)$ for all closed sets C
- 7. $\lim_{n\to\infty} \mathbb{P}(X_n \in B) = \mathbb{P}(X \in B)$ for all sets B such that $\mathbb{P}(X \in \partial B) = 0$

Remark We call a collection of functions \mathcal{F} a determining class if $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ for all $f \in \mathcal{F}$ if and only if $X_n \xrightarrow{d} X$. For example, from the theory of characteristic functions, we have a determining class $\mathcal{F} = \{x \mapsto e^{it^\top x} : t \in \mathbb{R}^d\}.$

Example 2: Fourier transforms or characteristic functions. Let $i = \sqrt{-1}$ and $f_t(x) = \exp(it^\top x)$ for $t \in \mathbb{R}^d$. Then

$$\mathbb{E}(f_t(X_n)) \to \mathbb{E}(f_t(X)) \,\forall t \in \mathbb{R}^d \iff X_n \xrightarrow{d} X.$$

÷

2 Delta Method

Suppose we have a sequence of statistics T_n that estimate a parameter θ and we know that $r_n(T_n - \theta)$ converges in distribution to T, and $r_n \to \infty$. Intuitively, we think of r_n as the rate of convergence. Suppose a function ϕ is smooth in the neighborhood of θ . Is it possible to say anything about $\phi(T_n) - \phi(\theta)$?

Theorem 4. (Delta Method). Let $r_n \to \infty$ and $\phi : \mathbb{R}^d \to \mathbb{R}^k$ be differentiable at θ and assume that $r_n(T_n - \theta) \xrightarrow{d} T$ for some random vector T. Then

1. $r_n(\phi(T_n) - \phi(\theta))$ converges in distribution to $\phi'(\theta)T$

2. $r_n(\phi(T_n) - \phi(\theta)) - r_n\phi'(\theta)(T_n - \theta)$ converges in probability to θ

Here $\phi'(\theta) \in \mathbb{R}^{k \times d}$ *is the Jacobian Matrix* $[\phi'(\theta)]_{ij} = \frac{\partial \phi_i(\theta)}{\partial \theta_j}$

Proof By the definition of the derivative, we have that

$$\phi(t) = \phi(\theta) + \phi'(\theta)(t - \theta) + o(||t - \theta||),$$

i.e.

$$\phi(t) = \phi(\theta) + \phi'(\theta)(t - \theta) + R(||t - \theta||) \tag{1}$$

where $\lim_{h\to 0} \frac{R(h)}{h} = 0$. Since $r_n(T_n - \theta)$ converges in distribution, we know that $r_n(T_n - \theta) = O_p(1)$, which implies that $r_n||T_n - \theta|| = O_p(1)$. We also have that $||T_n - \theta|| = o_p(1)$, which implies $R(||T_n - \theta||) = O_p(||T_n - \theta||)$. Thus

$$r_n R(||T_n - \theta||) = r_n o_p(||T_n - \theta||) = o_p(r_n ||T_n - \theta||) = o_p(O_p(1)) = o_p(1).$$

Using this along with (1), we have the second part of the theorem. Noting that $r_n\phi'(\theta)(T_n - \theta) \xrightarrow{d} \phi'(\theta)T$, and applying Slutsky's theorem, we get the first part as well.

Example 3: Let $X_i \stackrel{iid}{\sim} P$, $\mathbb{E}(X) = \theta \neq 0$, $Cov(X) = \Gamma$ and $\phi(h) = \frac{1}{2} ||h||^2$. Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{k}X_{i}-\theta\right)\overset{d}{\rightarrow}\mathsf{N}(0,\Gamma)$$

By the Delta Method, we have

$$\sqrt{n}\left(\frac{1}{2}\left\|\frac{1}{n}\sum X_i\right\|^2 - \frac{1}{2}||\theta||^2\right) \xrightarrow{d} \mathsf{N}(0,\theta^T \Gamma \theta).$$

Note if $||\theta||^2 = 0$, we actually have

$$\sqrt{n}\left(\frac{1}{2}\left\|\frac{1}{n}\sum X_i\right\|^2 - \frac{1}{2}||\theta||^2\right) \xrightarrow{p} 0.$$

So when $\theta = 0$, we would like to somehow adjust $r_n(\phi(T_n) - \phi(\theta))$ so that we get convergence to a non-trivial distribution. This is a precursor to the next section.

Example 4: (Sample Variance). Let X_1, \ldots, X_n be i.i.d with finite fourth moment. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$, $S_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, and $\overline{X_n^2} = n^{-1} \sum_{i=1}^n X_i^2$. We want weak convergence of $\sqrt{n}(S_n^2 - \sigma^2)$. First note that $S_n^2 = \overline{X_n^2} - (\bar{X}_n)^2 = \phi(\bar{X}_n, \overline{X_n^2})$, where $\phi(x, y) = y - x^2$. With $\alpha_i = \mathbb{E}X^i$, one can check that

$$\sqrt{n}\left(\left(\frac{\bar{X}_n}{X_n^2}\right) - \begin{pmatrix}\alpha_1\\\alpha_2\end{pmatrix}\right) \stackrel{d}{\to} \mathsf{N}\left(0, \begin{pmatrix}\alpha_2 - \alpha_1^2 & \alpha_3 - \alpha_1\alpha_2\\\alpha_3 - \alpha_1\alpha_2 & \alpha_4 - \alpha_2^2\end{pmatrix}\right).$$

Then by the Delta Method, we obtain

$$\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow{d} \mathsf{N}(0, \alpha_4 - \alpha_2^2)$$

÷

3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if $\phi'(\theta) = 0$, just look at higher order approximations. Usually in such settings, $\phi : \mathbb{R}^d \to \mathbb{R}$, and so $\phi'(\theta) = \nabla \phi(\theta) = 0 \in \mathbb{R}^d$.

Theorem 5. (Second Order Delta Method). Let $\phi : \mathbb{R}^d \to \mathbb{R}$ be twice differentiable at θ , and $r_n(T_n - \theta) \xrightarrow{d} T$. Then if $\nabla \phi(\theta) = 0$, we have

$$r_n^2(\phi(T_n) - \phi(\theta)) \xrightarrow{d} \frac{1}{2} T^T \nabla^2 \phi(\theta) T$$

Proof By definition,

$$\phi(t) = \phi(\theta) + \nabla \phi(\theta)^T (t - \theta) + \frac{1}{2} (t - \theta)^T \nabla^2 \phi(\theta) (t - \theta) + R(||t - \theta||),$$

where $R(h) = o(||h||^2)$. Since $\nabla \phi(\theta) = 0$, we actually have

$$\phi(t) = \phi(\theta) + \frac{1}{2}(t-\theta)^T \nabla^2 \phi(\theta)(t-\theta) + R(||t-\theta||).$$
⁽²⁾

Note $r_n^2 R(||T_n - \theta||) = r_n^2 o_p(||T_n - \theta||^2) = o_p(||r_n(T_n - \theta)||^2)$. Since $r_n(T_n - \theta)$ converges in distribution, so does $||r_n(T_n - \theta)||^2$, and so $||r_n(T_n - \theta)||^2 = O_p(1)$. Thus

$$r_n^2 R(||T_n - \theta||) = o_p(O_p(1)) = o_p(1).$$
(3)

Now by the continuous mapping theorem, we have that

$$\frac{1}{2}(r_n(T_n-\theta))^T \nabla^2 \phi(\theta)(r_n(T_n-\theta)) \xrightarrow{d} \frac{1}{2} T^T \nabla^2 \phi(\theta) T.$$
(4)

So combining (2), (3), (4) and using Slutsky's lemma, we get the desired convergence in distribution. \Box

Example 5: Estimating the parameter of a Bernoulli random variable. Suppose $\theta \in (0, 1)$, $X_i \sim \text{Bernoulli}(\theta)$. To estimate θ , we may use the sample mean $\hat{\theta}_n = n^{-1} \sum_{i=1}^n X_i$. Clearly, $\mathbb{E}\hat{\theta}_n = \theta$, $\text{Var}(\hat{\theta}_n) = \frac{\theta(1-\theta)}{n}$. Instead of using mean squared error to measure the performance of $\hat{\theta}_n$, let us use the Kullback-Leibler (KL) divergence (or the log loss). This is

$$D_{KL}(P \parallel Q) = \int dP \log\left(\frac{dP}{dQ}\right).$$

Let P_t = Bernoulli(t), $t \in [0, 1]$. So

$$D_{KL}(P_t \parallel P_{\theta}) = t \log \frac{t}{\theta} + (1-t) \log \frac{1-t}{1-\theta}.$$

Let $\phi(t) = D_{KL}(P_t || P_{\theta})$. Then

$$\phi'(t) = \log \frac{t}{1-t} - \log \frac{\theta}{1-\theta}.$$

Note $\phi'(\theta) = 0$. So we need the second derivative:

$$\phi''(t) = \frac{1}{t} + \frac{1}{1-t} = \frac{1}{t(1-t)}$$

and so $\phi''(\theta) = \frac{1}{\theta(1-\theta)}$. So by the second order Delta Method,

$$nD_{KL}(P_{\hat{\theta}_n} \parallel P_{\theta}) \xrightarrow{d} \frac{1}{2}\chi^2_{(1)}.$$

Ļ