Stats 300b: Theory of Statistics Winter 2019

Lecture 2 – January 11

Lecturer: John Duchi Scribe: Xinkun Nie

Warning: these notes may contain factual errors

Reading: VDV Chapter 2

- 1. Portmanteau and Prohorov's Theorems
- 2. Delta method and examples

1 Convergence recap

Definition 1.1. A sequence of random variables $\{X_n\}$ converges in probability to a random variable X, *denoted* $X_n \xrightarrow{p} X$, *if* $P(d(X_n, X) > \varepsilon) \to 0$ *for all* $\varepsilon > 0$ *.*

Definition 1.2. *A sequence of random variables* $\{X_n\}$ *converges in distribution to a random variable X*, *denoted* $X_n \stackrel{d}{\to} X$ *, if* $P(X_n \leq x) \to P(X \leq x)$ for all continuity points x of the function $x \mapsto P(X \leq x)$ *. This is equivalent to the assertion that* $\mathbb{E} f(X_n) \to \mathbb{E} f(X)$ *for all bounded continuous functions f.*

Theorem 1. *(*Slutsky's Theorem*).*

- *1. If* $d(X_n, Y_n) \xrightarrow{p} 0$, $X_n \xrightarrow{d} X$, then $Y_n \xrightarrow{d} X$.
- 2. *If* $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c$, then $(X_n, Y_n) \xrightarrow{d} (X, c)$.

Remark If the limiting distribution of Y_n is not a constant, then the second part of the theorem does not necessarily hold. Because when *^Y* is random and (*X*, *^c*) is replaced by (*X*, *^Y*), we must now specify the joint law of (*X*, *^Y*).

Definition 1.3. *A collection* $\{X_\alpha\}_{\alpha \in A}$ *is uniformly tight if or* $\forall \epsilon > 0$, $\exists M < \infty$ *such that*

$$
\sup_{\alpha \in \mathcal{A}} \mathbb{P}(\|X_{\alpha}\| \ge M) \le \epsilon
$$

Remark

- 1. A single random vector is tight
- 2. If $X_n \stackrel{d}{\to} X$ then $\{X_n\}$ is uniformly tight. To show this, let *x* be a continuity point of $\mathbb{P}(\|X\|\geq x)$, then $\mathbb{P}(|X_n| \ge x) \to \mathbb{P}(|X| \ge x)$. Choose *x* large enough such that $\mathbb{P}(|X| \ge x)$ is small.

Theorem 2. *(Prohorov's theorem)*

A collection of random vectors ${X_\alpha}_{\alpha \in A}$ *is uniformly tight if and only if it is sequentially compact for weak convergence. i.e. for all sequences* $\{X_n\}_{n\in\mathbb{N}} \subset \{X_\alpha\}_{\alpha \in A}$ *, there exists a subsequence* n_k *and a random vector* X such that $X_{n_k} \stackrel{d}{\rightarrow} X$.

Remark *d* this is Helley's selection theorem (i.e. CDFs *Fⁿ* have convergent subsequences.)

Example 1: ("Easy" way to get uniformly tightness: Markov's inequality) Let $\{X_{\alpha}\}_{{\alpha}\in A}$ satisfy $\mathbb{E}(\|X_{\alpha}\|^p) \leq k < \infty$, for all $\alpha \in A$ and some $p > 0$. Then $\{X_{\alpha}\}_{{\alpha}\in A}$ is uniformly tight.

Proof By markov inequality,

$$
\mathbb{P}(|X_{\alpha}|| \ge M) \le \frac{\mathbb{E}(|X_{\alpha}||^{p}))}{M^{p}} \le \frac{k}{M^{p}} \to 0
$$

as $M \to \infty$

♣

Theorem 3. *(*Portmanteau Theorem*). Let Xn, X be random vectors. The following are equivalent.*

- *1. Xⁿ converges in distribution to X*
- 2. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ *for all bounded and continuous f*
- *3.* $\mathbb{E}(f(X_n))$ → $\mathbb{E}(f(X))$ *for all one-Lipschitz f with* $f \in [0, 1]$
- *4.* lim inf_{*n*→∞} $E(f(X_n)) \ge E(f(X))$ *for non-negative and continuous f.*
- *5.* lim inf_{*n→∞*} $\mathbb{P}(X_n \in O) \geq \mathbb{P}(X \in O)$ *for all open sets O*
- *6.* lim sup_{*n*→∞} $\mathbb{P}(X_n \in C)$ ≤ $\mathbb{P}(X \in C)$ *for all closed sets C*
- *7.* $\lim_{n\to\infty}$ $\mathbb{P}(X_n \in B) = \mathbb{P}(X \in B)$ *for all sets B such that* $\mathbb{P}(X \in \partial B) = 0$

Remark We call a collection of functions $\mathcal F$ a determining class if $\mathbb E(f(X_n)) \to \mathbb E(f(X))$ for all $f \in \mathcal F$ if and only if $X_n \stackrel{d}{\rightarrow} X$. For example, from the theory of characteristic functions, we have a determining class $\mathcal{F} = \{x \mapsto e^{it^{\top}x} : t \in \mathbb{R}^d\}.$

Example 2: Fourier transforms or characteristic functions. Let *i* = √ $\overline{-1}$ and $f_t(x) = \exp(it^{\top}x)$ for $t \in \mathbb{R}^d$. Then

$$
\mathbb{E}(f_t(X_n)) \to \mathbb{E}(f_t(X)) \,\forall t \in \mathbb{R}^d \iff X_n \stackrel{d}{\to} X.
$$

♣

2 Delta Method

Suppose we have a sequence of statistics T_n that estimate a parameter θ and we know that $r_n(T_n-\theta)$ converges in distribution to T, and $r_n \to \infty$. Intuitively, we think of r_n as the rate of convergence. Suppose a function ϕ is smooth in the neighborhood of θ . Is it possible to say anything about $\phi(T_n) - \phi(\theta)$?

Theorem 4. *(Delta Method). Let* $r_n \to \infty$ *and* $\phi : \mathbb{R}^d \to \mathbb{R}^k$ *be differentiable at* θ *and assume that* $r_n(T_n - \theta) \stackrel{d}{\rightarrow} T$ *for some random vector T*. *Then*

1. $r_n(\phi(T_n) - \phi(\theta))$ *converges in distribution to* $\phi'(\theta)T$

2. $r_n(\phi(T_n) - \phi(\theta)) - r_n \phi'(\theta)(T_n - \theta)$ *converges in probability to 0*

Here $\phi'(\theta) \in \mathbb{R}^{k \times d}$ *is the Jacobian Matrix* $[\phi'(\theta)]_{ij} = \frac{\partial \phi_i(\theta)}{\partial \theta_j}$ ∂θ *j*

Proof By the definition of the derivative, we have that

$$
\phi(t) = \phi(\theta) + \phi'(\theta)(t - \theta) + o(||t - \theta||),
$$

i.e.

$$
\phi(t) = \phi(\theta) + \phi'(\theta)(t - \theta) + R(||t - \theta||)
$$
\n(1)

where $\lim_{h\to 0} \frac{R(h)}{h}$ $\frac{h}{h} = 0$. Since $r_n(T_n - \theta)$ converges in distribution, we know that $r_n(T_n - \theta) = O_p(1)$,
bat *r* $||T - \theta|| - O(1)$. We also have that $||T - \theta|| - O(1)$, which implies $P(||T - \theta||)$ which implies that $r_n||T_n - \theta|| = O_p(1)$. We also have that $||T_n - \theta|| = o_p(1)$, which implies $R(||T_n - \theta||) =$ $o_p(||T_n - \theta||)$. Thus

$$
r_n R(||T_n - \theta||) = r_n o_p(||T_n - \theta||) = o_p(r_n ||T_n - \theta||) = o_p(O_p(1)) = o_p(1).
$$

Using this along with [\(1\)](#page-2-0), we have the second part of the theorem. Noting that $r_n\phi'(\theta)(T_n - \theta) \stackrel{d}{\rightarrow} \phi'(\theta)T$, and applying Slutsky's theorem, we get the first part as well.

Example 3: Let $X_i \stackrel{iid}{\sim} P$, $E(X) = \theta \neq 0$, Cov(X) = Γ and $\phi(h) = \frac{1}{2}$ $\frac{1}{2}$ ||h||². Then

$$
\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^k X_i - \theta\right) \stackrel{d}{\to} \mathsf{N}(0,\Gamma)
$$

By the Delta Method, we have

$$
\sqrt{n}\left(\frac{1}{2}\bigg\|\frac{1}{n}\sum X_i\bigg\|^2 - \frac{1}{2}\|\theta\|^2\right) \stackrel{d}{\to} \mathsf{N}(0, \theta^T\Gamma\theta).
$$

Note if $\|\theta\|^2 = 0$, we actually have

$$
\sqrt{n}\left(\frac{1}{2}\bigg\|\frac{1}{n}\sum X_i\bigg\|^2 - \frac{1}{2}\|\theta\|^2\right) \stackrel{p}{\to} 0.
$$

So when $\theta = 0$, we would like to somehow adjust $r_n(\phi(T_n) - \phi(\theta))$ so that we get convergence to a non-trivial distribution. This is a precursor to the next section. ♣

Example 4: (Sample Variance). Let *X*₁, . . . , *X_n* be i.i.d with finite fourth moment. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$, $S_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, and $\overline{X}_n^2 = n^{-1} \sum_{i=1}^n X_i^2$. We want weak convergence of $\sqrt{n}(S_n^2 - \sigma^2)$. First note that $S_n^2 = X_n^2 - (\bar{X}_n)^2 = \phi(\bar{X}_n, X_n^2)$, where $\phi(x, y) = y - x^2$. With $\alpha_i = \mathbb{E}X^i$, one can check that

$$
\sqrt{n}\left(\left(\frac{\bar{X}_n}{X_n^2}\right)-\left(\begin{matrix}\alpha_1\\ \alpha_2\end{matrix}\right)\right)\overset{d}{\rightarrow}\mathsf{N}\left(0,\left(\begin{matrix}\alpha_2-\alpha_1^2 & \alpha_3-\alpha_1\alpha_2\\ \alpha_3-\alpha_1\alpha_2 & \alpha_4-\alpha_2^2\end{matrix}\right)\right).
$$

Then by the Delta Method, we obtain

$$
\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow{d} \mathsf{N}(0, \alpha_4 - \alpha_2^2).
$$

♣

3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if $\phi'(\theta) = 0$, just look at higher order approximations. Lisually in such settings $\phi : \mathbb{R}^d \to \mathbb{R}$ and so $\phi'(\theta) - \nabla \phi(\theta) - 0 \in \mathbb{R}^d$ tions. Usually in such settings, $\phi : \mathbb{R}^d \to \mathbb{R}$, and so $\phi'(\theta) = \nabla \phi(\theta) = 0 \in \mathbb{R}^d$.

Theorem 5. *(Second Order Delta Method). Let* $\phi : \mathbb{R}^d \to \mathbb{R}$ *be twice differentiable at* θ *, and* $r_n(T_n - \theta) \stackrel{d}{\to} T$ *. Then* if $\nabla \phi(\theta) = 0$, we have *Then if* $\nabla \phi(\theta) = 0$ *, we have*

$$
r_n^2(\phi(T_n) - \phi(\theta)) \stackrel{d}{\rightarrow} \frac{1}{2} T^T \nabla^2 \phi(\theta) T.
$$

Proof By definition,

$$
\phi(t) = \phi(\theta) + \nabla \phi(\theta)^T (t - \theta) + \frac{1}{2} (t - \theta)^T \nabla^2 \phi(\theta) (t - \theta) + R(||t - \theta||),
$$

where $R(h) = o(||h||^2)$. Since $\nabla \phi(\theta) = 0$, we actually have

$$
\phi(t) = \phi(\theta) + \frac{1}{2}(t - \theta)^T \nabla^2 \phi(\theta)(t - \theta) + R(||t - \theta||). \tag{2}
$$

Note $r_n^2 R(||T_n - \theta||) = r_n^2 o_p(||T_n - \theta||^2) = o_p(||r_n(T_n - \theta)||^2)$. Since $r_n(T_n - \theta)$ converges in distribution, so does $||r_n(T_n - \theta)||^2$ and so $||r_n(T_n - \theta)||^2 = O(1)$. Thus does $||r_n(T_n - \theta)||^2$, and so $||r_n(T_n - \theta)||^2 = O_p(1)$. Thus

$$
r_n^2 R(||T_n - \theta||) = o_p(O_p(1)) = o_p(1).
$$
\n(3)

Now by the continuous mapping theorem, we have that

$$
\frac{1}{2}(r_n(T_n - \theta))^T \nabla^2 \phi(\theta)(r_n(T_n - \theta)) \stackrel{d}{\to} \frac{1}{2} T^T \nabla^2 \phi(\theta) T.
$$
\n(4)

So combining [\(2\)](#page-3-0), [\(3\)](#page-3-1), [\(4\)](#page-3-2) and using Slutsky's lemma, we get the desired convergence in distribution. \square

Example 5: Estimating the parameter of a Bernoulli random variable. Suppose $\theta \in (0, 1)$, $X_i \sim \text{Bernoulli}(\theta)$. To estimate θ , we may use the sample mean $\hat{\theta}_n = n^{-1} \sum_{i=1}^n X_i$. Clearly, $\mathbb{E}\hat{\theta}_n = \theta$, $\text{Var}(\hat{\theta}_n) = \frac{\theta(1-\theta)}{n}$. Instead of using mean squared error to measure the performance of $\hat{\theta}_n$, let us use the Kullback-Leibler (KL) divergence (or the log loss). This is

$$
D_{KL}(P \parallel Q) = \int dP \log \bigg(\frac{dP}{dQ}\bigg).
$$

Let P_t = Bernoulli(*t*), $t \in [0, 1]$. So

$$
D_{KL}(P_t \parallel P_{\theta}) = t \log \frac{t}{\theta} + (1 - t) \log \frac{1 - t}{1 - \theta}.
$$

Let $\phi(t) = D_{KL}(P_t || P_{\theta})$. Then

$$
\phi'(t) = \log \frac{t}{1-t} - \log \frac{\theta}{1-\theta}.
$$
derivative:

Note $\phi'(\theta) = 0$. So we need the second derivative:

$$
\phi''(t) = \frac{1}{t} + \frac{1}{1-t} = \frac{1}{t(1-t)},
$$

and so $\phi''(\theta) = \frac{1}{\theta(1-\theta)}$. So by the second order Delta Method,

$$
nD_{KL}(P_{\hat{\theta}_n} \parallel P_{\theta}) \stackrel{d}{\rightarrow} \frac{1}{2} \chi^2_{(1)}.
$$

♣