Stats 300b: Theory of Statistics

Winter 2019

Lecture 3 – January 15

Lecturer: John Duchi Scribe: Nian Si

Warning: these notes may contain factual errors

Reading: VDV Chapter 3-4

Outline of Lecture 2:

- 1. Basic consistency and identifiability
- 2. Asymptotic Normality Results
 - (a) Taylor expansions & Fisher Information
 - (b) Moment method (not covered)

1 Recap: Delta method (Taylor expansions)

Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows: If $r_n(T_n - \theta) \stackrel{d}{\to} T$, then $r_n(\phi(T_n) - \phi(\theta)) = r_n(\phi'(\theta)(T_n - \theta)) + o_p(1) \stackrel{d}{\to} \phi'(\theta)T$.

2 Today: Consistency and Asymptotic Normality

Idea: Often log-likelihoods of models are smooth enough to permit Taylor Taylor approximations, So we can apply Delta method and CLTs to understand estimators.

Notation and Setting: Model family $\{P_{\theta}\}_{{\theta}\in\Theta}$ of distributions on space \mathcal{X} and $\Theta\in\mathbb{R}^d$. Let log-likelihood of model P_{θ} with density p_{θ} be $l_{\theta}(x) := \log p_{\theta}(x)$.

Definition 2.1. Given distribution P on \mathcal{X} , function $f: \mathcal{X} \to \mathbb{R}^d$,

$$Pf := \int f dP = \int_{\mathcal{X}} f(x) dP(x) = \mathbb{E}_P[f(x)].$$

Example 1: If X_i , i = 1, ..., n, are observations, we use P_n to denote the empirical distribution, i.e, $P_n := \frac{1}{n} \sum_{i=1}^n I_{X_i}$. So, $P_n(A) = \frac{1}{n} |\{i \in [n] : x_i \in A\}|$ and $P_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$.

Definition 2.2.

$$\nabla \ell_{\theta}(x) := \left[\frac{\partial}{\partial \theta_{j}} \log p_{\theta}(x) \right]_{j=1}^{d} \in \mathbb{R}^{d}$$
(1)

$$\nabla^2 \ell_{\theta}(x) := \left[\frac{\partial^2}{\partial \theta_i \theta_j} \log p_{\theta}(x) \right]_{i,j=1}^d \in \mathbb{R}^{d \times d}$$
 (2)

Note: $\dot{\ell}_{\theta}(x) \equiv \nabla \ell_{\theta}(x)$ and $\ddot{\ell}_{\theta}(x) \equiv \nabla^2 \ell_{\theta}(x)$.

Problem Today: Observe $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ but θ_0 is unknown. Our goal is to estimate θ_0 . A standard estimation is Maximum likelihood:

$$\hat{\theta}_n = \operatorname*{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x).$$

Three important questions:

- 1. Consistency: Does $\hat{\theta}_n \stackrel{p}{\to} \theta_0$ as $n \to \infty$?
- 2. What is the asymptotic distribution and the rate of convergence of $\hat{\theta}_n$ to θ_0 , i.e. for what $r_n \to \infty$, does $r_n(\hat{\theta}_n \theta_0) \stackrel{d}{\to} Z$ and what is Z?
- 3. Optimality?

We will talk briefly about (1), and more about (2).

2.1 Consistency

Definition 2.3 (Identifiability). A model $\{P_{\theta}\}_{\theta \in \Theta}$ is <u>identifiable</u> if $P_{\theta_1} \neq P_{\theta_2}$ for all $\theta_1, \theta_2 \in \Theta$ $(\theta_1 \neq \theta_2)$.

Equivalently,
$$D_{kl}\left(P_{\theta_1}\|P_{\theta_2}\right) > 0$$
 when $\theta_1 \neq \theta_2$. Recall that $D_{kl}\left(P_{\theta_1}\|P_{\theta_2}\right) = \int \log \frac{dP_{\theta_1}}{dP_{\theta_2}} dP_{\theta_1}$.

Now that we have established what both identifiability and consistency mean, we can prove a basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 1 (Basic consistency for finite Θ). Suppose $\{P_{\theta}\}_{\theta \in \Theta}$ is identifiable and $|\Theta| < \infty$. Then, if $\hat{\theta}_n := \operatorname{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x)$ and $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$, $\hat{\theta}_n \stackrel{a.s.}{\to} \theta_0$.

Proof of Proposition We know by the Strong Law of Large Numbers that $P_n\ell_{\theta}(x) \stackrel{a.s.}{\to} P_{\theta_0}\ell_{\theta}(x)$ when $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$. Then,

$$P_{\theta_0}\ell_{\theta_0}(x) - P_{\theta_0}\ell_{\theta}(x) = \mathbb{E}_{\theta_0}\left[\log\left(\frac{p_{\theta_0}(x)}{p_{\theta}(x)}\right)\right] = D_{\mathrm{kl}}\left(P_{\theta_0}\|P_{\theta}\right) > 0$$

for $\theta \neq \theta_0$. So, eventually we have that $P_n \ell_{\theta_0}(x) > P_n \ell_{\theta}(x)$ for all $\theta \neq \theta_0$.

Remark Sometimes, the above result can fail when $|\Theta| = \infty$ even if the model is identified.

One sufficient condition often used for consistency results is a uniform law of large numerbs,: $\sup_{\theta \in \Theta} |P_n \ell_\theta - P \ell_\theta| \stackrel{p}{\to} 0$.

2.2 Asymptotic Normality and Taylor Expansions:

Definition 2.4 (Operator norm).

$$\|A\|_{op} := \sup_{\|u\|_2 \le 1} \|Au\|_2 = \sup_{\|u\|_2 \le 1, \|v\|_2 \le 1} u^T A v.$$

Note: $||Ax|| \le ||A||_{op} ||x||$.

Assume we have a nice smooth model family. Specifically, we assume

- 1. $\mathbb{E}_{\theta_0} \left[\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T \right]$ exists.
- 2. Lipschitz smoothness condition on second derivatives:

$$\left\| \nabla^2 \ell_{\theta_1}(x) - \nabla^2 \ell_{\theta_2}(x) \right\|_{op} \le M(x) \left\| \theta_1 - \theta_2 \right\|_2$$

for θ_1 and θ_2 near θ_0 and $\mathbb{E}_{\theta}[M^2(x)] < \infty$.

Note: Taylor expansions can be a little tricker. If $f: \mathbb{R}^d \to \mathbb{R}^d$, let $Df(\theta) := [\nabla f_1(\theta), \dots, \nabla f_d(\theta)]^d \in \mathbb{R}^{d \times d}$. Then $\|Df(\theta) - Df(\theta')\|_{op} \leq M(x) \|\theta_1 - \theta_2\|_2$ implies

$$f(\theta) = f(\theta_0) + (Df(\theta_0) + E_{\theta})(\theta - \theta_0),$$

when $E_{\theta} \in \mathbb{R}^{d \times d}$ and $||E_{\theta}|| \le M ||\theta_1 - \theta_2||_2$.

NOT mean-value-like results. We do **NOT** get that for some $\tilde{\theta}$ between θ, θ_0 ,

$$f(\theta) = f(\theta_0) + \left(Df(\tilde{\theta})\right)(\theta - \theta_0).$$

Theorem 2. Let $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ and assume the consistency $\hat{\theta}_n \stackrel{p}{\rightarrow} \theta_0$ and $P_n \nabla \ell(\hat{\theta}_n) = 0$ and the conditions stated above hold. Then,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathsf{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1} P_{\theta_0} (\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T) (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1}).$$

Intuition: If Hessian $P_{\theta_0}\nabla^2$ is "big" then lots of curvature makes estimation easier; on the other hand, if it is small, then little curvature makes estimation hard.

"Simplifying" Remarks: Usually, we can swap ∇ (differentiation) and \int (expectation).

Then,

$$\nabla^2 \ell_{\theta} = \nabla \left(\frac{\nabla p_{\theta}}{p_{\theta}} \right) = \frac{\nabla^2 p_{\theta}}{p_{\theta}} - \frac{\nabla p_{\theta} \nabla p_{\theta}^T}{p_{\theta}^2}.$$

If $\nabla \mathbb{E} = \mathbb{E} \nabla$,

$$\mathbb{E}_{\theta_0} \left[\frac{\nabla^2 p_{\theta_0}}{p_{\theta_0}} \right] = \int \frac{\nabla^2 p_{\theta_0}}{p_{\theta_0}} p_{\theta_0} d\mu = \int \nabla^2 p_{\theta_0} d\mu = \nabla^2 \int p_{\theta_0} d\mu = \nabla^2 1 = 0.$$

So,

$$P_{\theta_0} \nabla^2 \ell_{\theta_0}(x) = -P_{\theta_0} (\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T) = -I_{\theta_0} = \text{Fisher Information}.$$

Consequence: substitute Fish information into our asymptotic covariance.

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} N(0, I_{\theta_0}^{-1}).$$

Intuition: If information matrix is large, I_{θ_0} is "large", problem is easier. Slope or score function $\nabla \ell_{\theta}$ is large, which means it is easy to find $\mathbb{E}_{\theta_0}(\nabla \ell_{\theta}) = 0$.

Proof of Theorem Taylor expansions + CLTs + Slutsky

Let $E_{\hat{\theta}_n} \in \mathbb{R}^{d \times d}$ be the remainder matrix in Taylor expansion of the gradients of the individual log likelihood terms around θ_0 guaranteed by Taylor's theorem (which certainly depends on $\hat{\theta}_n - \theta_0$), that is,

$$\nabla \ell_{\hat{\theta}_n}(x) = \nabla \ell_{\theta_0}(x) + \left(\nabla^2 \ell_{\theta_0}(x) + E_{\hat{\theta}_n}(x)\right)(\hat{\theta}_n - \theta_0),$$

where by Taylor's theorem $\|E_{\hat{\theta}_n}(x)\|_{op} \leq M(x)\|\hat{\theta}_n - \theta_0\|$. Writing this out using the empirical distribution and that $\hat{\theta}_n = \operatorname{argmax}_{\theta} P_n \ell_{\theta}(X)$, we have

$$0 = \nabla P_n \ell_{\hat{\theta}_n} = P_n \nabla \ell_{\theta_0} + P_n \left(\nabla^2 \ell_{\theta_0} + E_{\hat{\theta}_n} \right) (\hat{\theta}_n - \theta_0). \tag{3}$$

But of course, expanding the term $P_n E_{\hat{\theta}_n}(X) \in \mathbb{R}^{d \times d}$, we find that

$$P_n E_{\hat{\theta}_n}(X) = \frac{1}{n} \sum_{i=1}^n E_{\hat{\theta}_n}(X_i) \le \underbrace{\frac{1}{n} \sum_{i=1}^n M(X_i)}_{\stackrel{a.s}{\to} \mathbb{E}_{\theta_0}[M(X)]} \underbrace{\|\hat{\theta}_n - \theta_0\|}_{\stackrel{p}{\to} 0} = o_P(1).$$

In particular, revisiting expression (3), we have

$$0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0} (\hat{\theta}_n - \theta_0) + o_P(1) (\hat{\theta}_n - \theta_0).$$

= $P_n \nabla \ell_{\theta_0} + (P_{\theta_0} \nabla^2 \ell_{\theta_0} + (P_n - P_{\theta_0}) \nabla^2 \ell_{\theta_0} + o_P(1)) (\hat{\theta}_n - \theta_0).$

The strong law of large numbers guarantees that $(P_n - P_{\theta_0})\nabla^2 \ell_{\theta_0} = o_P(1)$, and multiplying each side by \sqrt{n} yields

$$\sqrt{n}(P_{\theta_0}\nabla^2\ell_{\theta_0} + o_P(1))(\hat{\theta}_n - \theta_0) = -\sqrt{n}P_n\nabla\ell_{\theta_0}.$$

Applying Slutsky's theorem gives the result: indeed, we have $T_n = \sqrt{n}P_n\nabla\ell_{\theta_0}$ satisfies $T_n \stackrel{d}{\to} \mathsf{N}(0, P_{\theta_0}(\nabla\ell_{\theta_0}\nabla\ell_{\theta_0}^T))$ by the central limit theorem, and noting that $P_{\theta_0}\nabla^2\ell_{\theta_0} + o_P(1)$ is eventually invertible gives

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \overset{d}{\to} (P_{\theta_0} \nabla^2_{\theta_0})^{-1} \mathsf{N}(0, P_{\theta_0} (\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T))$$

as desired. \Box

Remark If the model is not a true model, but we still have $\theta_0 = \operatorname{argmax}_{\theta \in \Theta} \mathbb{E}[\log p_{\theta}(x)]$ and $\nabla_{\theta} \mathbb{E}[\log p_{\theta_0}(x)] = 0$, then proof is completely identical, once we have consistence $\hat{\theta}_n \stackrel{p}{\to} \theta_0$.