Stats 300b: Theory of Statistics Winter 2019

Lecture 3 — January 15

Lecturer: John Duchi Scribe: Nian Si
{% Warning: these notes may contain factual errors

Reading: VDV Chapter 3-4

Outline of Lecture 2:
1. Basic consistency and identifiability

2. Asymptotic Normality Results

(a) Taylor expansions & Fisher Information
(b) Moment method (not covered)

1 Recap: Delta method (Taylor expansions)

Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows:
If 7 (T — 0) 5 T, then 1, (&(T) — 6(8)) = 76 (0)(T,, — 8)) + 0,(1) % &/ (6)T.

2 Today: Consistency and Asymptotic Normality

Idea: Often log-likelihoods of models are smooth enough to permit Taylor Taylor approximations,
So we can apply Delta method and CLTs to understand estimators.

Notation and Setting: Model family {Py}gce of distributions on space X and © € R?. Let
log-likelihood of model Py with density pg be ly(z) := log pg(x).

Definition 2.1. Given distribution P on X, function f : X — RY,

Pfi= [ far - /X F(2)dP(z) = Ep[f(x)].

Example 1: If X;, i =1,...,n, are observations, we use P, to denote the empirical distribution,
ie, P =157 Iy, So, Py(A)=L1|{ien]:a;€ A} and P, f =157 | f(x,).
&

Definition 2.2.
d

0
Vig(x) = [89 logpg(x)} e R? (1)
J j=1
0?2 d
V2ly(z) = [89-0' logpg(x)] e R4 (2)
iVj ij=1

Note: lg(z) = Vig(z) and ly(x) = Vlp(z).



Problem Today: Observe X; id Py, but 6 is unknown. Our goal is to estimate 6y.
A standard estimation is Maximum likelihood:

0, = argmax P,y (x).
0co

Three important questions:

1. Consistency: Does 6, B0y as n — 00?

2. What is the asymptotic distribution and the rate of convergence of 0, to Ay, i.e. for what
rn — 00, does 'rn(én — ) % 7 and what is Z?

3. Optimality?

We will talk briefly about (1), and more about (2).

2.1 Consistency

Definition 2.3 (Identifiability). A model {Py}oco is identifiable if Py, # Py, for all 61,02 € ©
(01 # 62).

P,
Equivalently, Dy (Pp, | Pp,) > 0 when 61 # 02. Recall that Dy (Py, | Py,) = /log dF%,

Py,

dPp,.

Now that we have established what both identifiability and consistency mean, we can prove a
basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).
Proposition 1 (Basic consistency for finite ©). Suppose {Py}oco is identifiable and |©| < oo.
Then, if 0, := argmaxgcg Pnlo(z) and X; id Py, 6,, 13 6.

Proof of Proposition =~ We know by the Strong Law of Large Numbers that P, ¢g(z) “3 Py, lg(z)
when Xj; id Pp,. Then,

Po, ('7})

po(T)
for 6 # 6y. So, eventually we have that Pl (z) > P,lp(x) for all 6 # 6. O

Py lo,(z) — Py lo(z) = Eg, [log < )] = Dy (Py,|Py) >0

Remark  Sometimes, the above result can fail when |©| = oo even if the model is identified.

One sufficient condition often used for consistency results is a uniform law of large numerbs,:
supgeo |Puly — Ply| 2 0.

2.2 Asymptotic Normality and Taylor Expansions:
Definition 2.4 (Operator norm).

HAHOP = sup |Au|,= sup u” Av.
lJull ;<1 ull,<1[lvll,<1

Note: [|Az|| < [[A]l,, [l]-

Assume we have a nice smooth model family. Specifically, we assume



1. Ey, [Vlg, VL5, ] exists.
2. Lipschitz smoothness condition on second derivatives:
V240, (2) = V240, )], < M(2) 161 021l

for 6, and 09 near 6y and Eg[M?(x)] < occ.

Note: Taylor expansions can be a little tricker. If f : R? — R%, let Df(0) := [V f1(6), ...,V f2(0)]% €
R, Then ||Df(0)—=Df(6)|l,, < M(x) |61 — 62|, implies

f(0) = f(00) + (Df(00) + Epg) (6 — 6o),

when Ey € R™? and ||Ey|| < M ||61 — 02|, - )
NOT mean-value-like results. We do NOT get that for some 6 between 6, 6,

7(6) = £(60) + (DS(9)) (60 o).
Theorem 2. Let X; id Py, and assume the consistency 0, 5 0y and PnVE(én) = 0 and the
conditions stated above hold. Then,

V(0 — 00) 5 N(O, (Pay V2lg,) ™ Pay (Lo, VL ) (Pay V24g) 1),

Intuition: If Hessian Ps,V? is "big” then lots of curvature makes estimation easier; on the other
hand, if it is small, then little curvature makes estimation hard.

?Simplifying” Remarks: Usually, we can swap V(differentiation) and [(expectation).
Then,

2 VoV T
V%:v(Vpe):Vpe_ PoVpy
Po Po Py
If VE = EV,

V2 \Y&i
EOO |:p€0:| = / Pl peodM = /v2p90d/L = v2 /pGOd:u = V21 = 0.
Doy Do,

So,
Py, V34, () = —PQO(VEQOVKZ;FO) = —Iy, = Fisher Information.

Consequence: substitute Fish information into our asymptotic covariance.
NG (én - 00) 4N, ).

Intuition: If information matrix is large, Iy, is "large”, problem is easier. Slope or score function
V/{y is large, which means it is easy to find Eq, (V{) = 0.
Proof of Theorem  Taylor expansions + CLTs + Slutsky

Let E; € R?*? be the remainder matrix in Taylor expansion of the gradients of the individual

log likelihood terms around 6y guaranteed by Taylor’s theorem (which certainly depends on 0, — o),
that is,
Vi, (z) = Vigy(z) + (V%o () + E; (x)) (6, — 60)),

n

3



where by Taylor’s theorem

‘Eé (m)” < M(z)||0n — 0o|. Writing this out using the empirical

distribution and that 6, = argmax, P,ls(X), we have
0=VP.l,; =PV +P, (v%o + Eén) (6, — 00). (3)

But of course, expanding the term P, E; (X) € R4 we find that

1 — 1 « -
PE, (X)=— E; (X;) < -— M(X) |0, — = 1).
0.(X) = 5 32, (X0 < 3 5 MOXD) [ — B0l = or (1)
a —_— 20
“$'Eoy [M(X)]

In particular, revisiting expression (3), we have

0= P,Vlg, + PV, (0, — 600) + 0p(1)(6,, — 6o).
= PV, + (Pay Vg, + (Pn — Poy)Vlg, + 0p(1)) (0, — 60).
The strong law of large numbers guarantees that (P, — Py,)V?{s, = op(1), and multiplying each
side by y/n yields )
V(Py, V249, 4+ 0p(1)) (0, — o) = —/nP, Vi,
Applying Slutsky’s theorem gives the result: indeed, we have T,, = /nP,V{y, satisfies T), LA

N(0, Py, (VﬁgOVKg;)) by the central limit theorem, and noting that Py, Vg, + op(1) is eventually
invertible gives

V(B — 00) % (PoyV3,)TIN(0, Py, (VLg, V15,)
as desired. O

Remark  If the model is not a true model, but we still have 6y = argmaxycg E [log pg(z)] and
VE [log pg, (z)] = 0, then proof is completely identical, once we have consistence 6,, 2 0.



