
Stats 300b: Theory of Statistics Winter 2019

Lecture 3 – January 15

Lecturer: John Duchi Scribe: Nian Si
� Warning: these notes may contain factual errors

Reading: VDV Chapter 3-4

Outline of Lecture 2:

1. Basic consistency and identifiability

2. Asymptotic Normality Results

(a) Taylor expansions & Fisher Information

(b) Moment method (not covered)

1 Recap: Delta method (Taylor expansions)

Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows:

If rn(Tn − θ)
d→ T , then rn(φ(Tn)− φ(θ)) = rn(φ′(θ)(Tn − θ)) + op(1)

d→ φ′(θ)T .

2 Today: Consistency and Asymptotic Normality

Idea: Often log-likelihoods of models are smooth enough to permit Taylor Taylor approximations,
So we can apply Delta method and CLTs to understand estimators.

Notation and Setting: Model family {Pθ}θ∈Θ of distributions on space X and Θ ∈ Rd. Let
log-likelihood of model Pθ with density pθ be lθ(x) := log pθ(x).

Definition 2.1. Given distribution P on X , function f : X → Rd,

Pf :=

∫
fdP =

∫
X
f(x)dP (x) = EP [f(x)].

Example 1: If Xi, i = 1, . . . , n, are observations, we use Pn to denote the empirical distribution,
i.e, Pn := 1

n

∑n
i=1 IXi . So, Pn(A) = 1

n |{i ∈ [n] : xi ∈ A}| and Pnf = 1
n

∑n
i=1 f(xi).

♣

Definition 2.2.

∇`θ(x) :=

[
∂

∂θj
log pθ(x)

]d
j=1

∈ Rd (1)

∇2`θ(x) :=

[
∂2

∂θiθj
log pθ(x)

]d
i,j=1

∈ Rd×d (2)

Note: ˙̀
θ(x) ≡ ∇`θ(x) and ῭

θ(x) ≡ ∇2`θ(x).
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Problem Today: Observe Xi
iid∼ Pθ0 but θ0 is unknown. Our goal is to estimate θ0.

A standard estimation is Maximum likelihood:

θ̂n = argmax
θ∈Θ

Pn`θ(x).

Three important questions:

1. Consistency: Does θ̂n
p→ θ0 as n→∞?

2. What is the asymptotic distribution and the rate of convergence of θ̂n to θ0, i.e. for what

rn →∞, does rn(θ̂n − θ0)
d→ Z and what is Z?

3. Optimality?

We will talk briefly about (1), and more about (2).

2.1 Consistency

Definition 2.3 (Identifiability). A model {Pθ}θ∈Θ is identifiable if Pθ1 6= Pθ2 for all θ1, θ2 ∈ Θ
(θ1 6= θ2).

Equivalently, Dkl (Pθ1 ||Pθ2) > 0 when θ1 6= θ2. Recall that Dkl (Pθ1 ||Pθ2) =

∫
log

dPθ1
dPθ2

dPθ1.

Now that we have established what both identifiability and consistency mean, we can prove a
basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 1 (Basic consistency for finite Θ). Suppose {Pθ}θ∈Θ is identifiable and |Θ| < ∞.

Then, if θ̂n := argmaxθ∈Θ Pn`θ(x) and Xi
iid∼ Pθ0, θ̂n

a.s.→ θ0.

Proof of Proposition We know by the Strong Law of Large Numbers that Pn`θ(x)
a.s.→ Pθ0`θ(x)

when Xi
iid∼ Pθ0 . Then,

Pθ0`θ0(x)− Pθ0`θ(x) = Eθ0
[
log

(
pθ0(x)

pθ(x)

)]
= Dkl (Pθ0 ||Pθ) > 0

for θ 6= θ0. So, eventually we have that Pn`θ0(x) > Pn`θ(x) for all θ 6= θ0.

Remark Sometimes, the above result can fail when |Θ| =∞ even if the model is identified.

One sufficient condition often used for consistency results is a uniform law of large numerbs,:
supθ∈Θ |Pn`θ − P`θ|

p→ 0.

2.2 Asymptotic Normality and Taylor Expansions:

Definition 2.4 (Operator norm).

‖A‖op := sup
‖u‖2≤1

‖Au‖2 = sup
‖u‖2≤1,‖v‖2≤1

uTAv.

Note: ‖Ax‖ ≤ ‖A‖op ‖x‖.

Assume we have a nice smooth model family. Specifically, we assume
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1. Eθ0
[
∇`θ0∇`Tθ0

]
exists.

2. Lipschitz smoothness condition on second derivatives:∥∥∇2`θ1(x)−∇2`θ2(x)
∥∥
op
≤M(x) ‖θ1 − θ2‖2

for θ1 and θ2 near θ0 and Eθ[M2(x)] <∞.

Note: Taylor expansions can be a little tricker. If f : Rd → Rd, letDf(θ) := [∇f1(θ), . . . ,∇fd(θ)]d ∈
Rd×d. Then ‖Df(θ)−Df(θ′)‖op ≤M(x) ‖θ1 − θ2‖2 implies

f(θ) = f(θ0) + (Df(θ0) + Eθ) (θ − θ0),

when Eθ ∈ Rd×d and ‖Eθ‖ ≤M ‖θ1 − θ2‖2 .
NOT mean-value-like results. We do NOT get that for some θ̃ between θ, θ0,

f(θ) = f(θ0) +
(
Df(θ̃)

)
(θ − θ0).

Theorem 2. Let Xi
iid∼ Pθ0 and assume the consistency θ̂n

p→ θ0 and Pn∇`(θ̂n) = 0 and the
conditions stated above hold. Then,

√
n(θ̂n − θ0)

d→ N(0, (Pθ0∇2`θ0)−1Pθ0(∇`θ0∇`Tθ0)(Pθ0∇2`θ0)−1).

Intuition: If Hessian Pθ0∇2 is ”big” then lots of curvature makes estimation easier; on the other
hand, if it is small, then little curvature makes estimation hard.

”Simplifying” Remarks: Usually, we can swap ∇(differentiation) and
∫

(expectation).
Then,

∇2`θ = ∇
(
∇pθ
pθ

)
=
∇2pθ
pθ
−
∇pθ∇pTθ

p2
θ

.

If ∇E = E∇,

Eθ0
[
∇2pθ0
pθ0

]
=

∫
∇2pθ0
pθ0

pθ0dµ =

∫
∇2pθ0dµ = ∇2

∫
pθ0dµ = ∇21 = 0.

So,
Pθ0∇2`θ0(x) = −Pθ0(∇`θ0∇`Tθ0) = −Iθ0 = Fisher Information.

Consequence: substitute Fish information into our asymptotic covariance.

√
n
(
θ̂n − θ0

)
d→ N(0, I−1

θ0
).

Intuition: If information matrix is large, Iθ0 is ”large”, problem is easier. Slope or score function
∇`θ is large, which means it is easy to find Eθ0 (∇`θ) = 0.
Proof of Theorem Taylor expansions + CLTs + Slutsky

Let Eθ̂n ∈ Rd×d be the remainder matrix in Taylor expansion of the gradients of the individual

log likelihood terms around θ0 guaranteed by Taylor’s theorem (which certainly depends on θ̂n−θ0),
that is,

∇`θ̂n(x) = ∇`θ0(x) +
(
∇2`θ0(x) + Eθ̂n(x)

)
(θ̂n − θ0)),
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where by Taylor’s theorem
∥∥∥Eθ̂n(x)

∥∥∥
op
≤ M(x)‖θ̂n − θ0‖. Writing this out using the empirical

distribution and that θ̂n = argmaxθ Pn`θ(X), we have

0 = ∇Pn`θ̂n = Pn∇`θ0 + Pn

(
∇2`θ0 + Eθ̂n

)
(θ̂n − θ0). (3)

But of course, expanding the term PnEθ̂n(X) ∈ Rd×d, we find that

PnEθ̂n(X) =
1

n

n∑
i=1

Eθ̂n (Xi) ≤
1

n

n∑
i=1

M(Xi)︸ ︷︷ ︸
a.s.→ Eθ0 [M(X)]

‖θ̂n − θ0‖︸ ︷︷ ︸
p→0

= oP (1).

In particular, revisiting expression (3), we have

0 = Pn∇`θ0 + Pn∇2`θ0(θ̂n − θ0) + oP (1)(θ̂n − θ0).

= Pn∇`θ0 +
(
Pθ0∇2`θ0 + (Pn − Pθ0)∇2`θ0 + oP (1)

)
(θ̂n − θ0).

The strong law of large numbers guarantees that (Pn − Pθ0)∇2`θ0 = oP (1), and multiplying each
side by

√
n yields √

n(Pθ0∇2`θ0 + oP (1))(θ̂n − θ0) = −
√
nPn∇`θ0 .

Applying Slutsky’s theorem gives the result: indeed, we have Tn =
√
nPn∇`θ0 satisfies Tn

d→
N(0, Pθ0(∇`θ0∇`Tθ0)) by the central limit theorem, and noting that Pθ0∇2`θ0 + oP (1) is eventually
invertible gives

√
n(θ̂n − θ0)

d→ (Pθ0∇2
θ0)−1N(0, Pθ0(∇`θ0∇`Tθ0))

as desired.

Remark If the model is not a true model, but we still have θ0 = argmaxθ∈Θ E [log pθ(x)] and

∇θE [log pθ0(x)] = 0, then proof is completely identical, once we have consistence θ̂n
p→ θ0.
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