Stats 300B: Theory of Statistics Winter 2019

Lecture 6 — January 24

Lecturer: John Duchi Scribe: Samyak Rajanala, Hui Xu

@ Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1 and Testing Statistical Hypotheses
Ch. 12.4

Outline:
e Testing (continued)

— Likelihood Ratio Tests (a.k.a. Wilks tests)
— Wald Tests

1 Introduction

The p-value is a probability under the null of observing data ”at least as extreme” as what you
actually saw.

For a given level a, we find a confidence set C,, such that Py (X1,... X, € Chao) > 1 —
a. If Xy,..., X, ¢ Cpq, we reject the null. In general, any set C), such that we can compute

Pr,(X1,... X, € Cy) can function as a confidence set.
Example 1: To test Hy : X; Yopy = N(0,1). The "natural” p-value is Po(|Z] > |0]), where

0= %Z?ZIX“ and Z = %Z?:l Z; for Ziij\c‘lPO )

Goal: Understand confidence regions and asymptotic levels of tests.

Definition 1.1. Let C,, be a sequence of regions, and let Hy : {0 € ©¢}, where the model family is
{Pp}oco. We say that C,, is uniformly level o asymptotically if

lim sup Py(0 ¢ Cy) < a.

n—=00 gc,

2 Generalized Likelihood Ratio Tests

Goal: Test Hy: 0 € ©q versus Hj : 6 € O, assuming 0y C O.

We make use of the following test statistic:

T(x) :=log SPoce Po(T) = log IRONTIONS
SUPpce, Po(2) SUPgeo, Po(T)

and we reject the null if T'(x) is big (which indicates that © is much more likely than ).



Proposition 1 (Wilks’, simplified). Let ©g = {6y}, 0 C R? be open. Let L,(X;0) =Y. Ly(X;) =
> logpe(X;). Define A, := Ln(X;0,) — Ln(X;60) = T(X), where 6,, := argmaxpee Ln(X;6).
Then under typical smoothness conditions (such as consistency and asymptotic normality) of the
MLE,

d 2
20, — 5.
nHO Xd

Note x?3 dist |wll3 where w ~ N(0, Ijxa).
Hence we obtain confidence regions for level o tests:

Reject if T(X) = Ap > uga, where P(x3 > 2ug,) < o

Proof Under Hy, 6, 5 6. For large enough n,

n
0= VLn(X;60,) = VL, (X;00) + V2L (X;00) (0 — 00) + Y _ Errgyy (6 — 6o),
i=1
where Err(;) = Op(| 0,, — 0o||). This was a Taylor approximation of the gradient of L. In addition,
we take a second-order Taylor approximation of L,,:

. . 1 . . .
Ln(X;0) = Ln(X;00) + VL(X;00) (0 — 00) + 5 (0n — 00)T V2L, (X;600)(0r — 00) + 0,(||6r — 60]|)-
After substituting the first equation into the second,
A, = Ln(Xa én) - Ln(X7 00)

(0 — 00)" VL (X;00) (0 — 00) + (0 — 00)Err(s) (0 — o) + 0p(1).
i=1

1
2

Now let wy, = v/n(f, — 60), s0 wy 5) N(0, Ie_ol)- With this new notation,
0

1 1 1 —
A, =——wl <V2LH(X, 90)> wy, + wl (n ZErr(1)> wy, + 0p(1)
=1
—>—Igo go
1 a1
= §w7:sz€own +op(1) = 5)(?['
d 2
Thus 24, = x3- O

Remark

e Could use likelihood ratio test for testing Hy : 8 = g, but may require substantial computa-
tion; e.g., to get the MLE under Hy.

e Can we use simpler tests to get the same asymptotic x? behavior?

e Note that everything is quadratic. Let’s just start with quadratics instead - Wald tests do
this.



3 Wald Tests
Definition 3.1. A Wald confidence ellipse is

Cyp ={0 €RY: (0= 0,)"1; (0—0,) <r/n}

where 0, is the estimator of 0.

~ ~

Remark  We have shown that for a point null Hy : {Py,} we have n(6, — 6p)Ip, (05 — 00) 1%
0

dist
X5 E w3 w ~ N0, Lixa).

Definition 3.2. A Wald test of point null § = 0y (against 6 # ) is constructed as follows: Let
Cra = {0 €R?: (0 —00)"1; (0 —60) < uj,/n}

where ufm is uniquely determined by P(x3 > Ug?a) = ).

Reject if O, ¢ Cha

Don’t Reject otherwise

T.(X):= {

= Reject iff (6p — én)TIén (60 — 0,,) > U?l,a/n'

Proposition 2. For testing Hy : 0 = 0y, a Wald test is asymptotically level o.

Proof Immediate from earlier results. OJ

Remark
e For the Fisher Information, we can replace I 0. with Iy, and the asymptotic level is the same.

e One weakness is that likelihood ratio and Wald tests can only handle point nulls. What if we
have a composite null, e.g. if we have nuisance parameters?

”nuisance parameter”

. —
Example 2: X; b N(u,0?). Hy = {u = 0, 02 >0 }. None of the results we have

gathered so far apply in this case. &

Let us now consider smooth problems with 7(§) € R4, Define X(0) := I(§)~!. Assume the
MLE /7 (6, — 6o) ;d> N(0,%(0). We will consider the case where we only care about estimating
0

functions of 6, usually just certain coordinates. Define
U1
U2

[U]lzk =

Uk



That is, just the first & coordinates of v € R?, k < d.
Similarly, define (%) € R¥** as the leading principal minor (of order k). Specifically,

== 7]

Then automatically due to the properties of the multivariate normal,

V(Bn]ik — [Bo] 1) = N(0, 50 (6p)).

Pogy
Note that $*)() acts as the inverse Fisher Information for the first k& coordinates.

Lemma 3 (Schur Complement). Suppose

A AlZ] T
A= A= AT, Awo0.
[Am Ao

If M =AY, then Myy = (Ayy — AppAytAy)

When 6, is the MLE of 6, then

n(0a]1 — ol1a)” [EPG)] T (Ol — Bo]as) S G

where

[200)] " = 1u(0a) — (0, E(0n) " I (0.

Now we can design a Wald-type test of these composite nulls with nuisance parameters.
Definition 3.3 (Wald Test, Composite). Let Hy : {# € R? : [0]1., = [00]1:k, Okt1, - - - , O unspecified}.
Define the acceptance region as

Cha = {9 e R%: ([0]1h — (o)1) ™ [E(k)(én)]_l ([0]1:% — [Bo]1:k) < Uz?,a/”}

where Ug,a is [uniquely] determined by P(x2 > Ulia) = «. The Wald test for composite nulls is
given by

T, = , )
Don’t Reject otherwise

{Reject if 6, ¢ Ch.a

Proposition 4. If 0, is efficient for 6 in model { Py}oco, then T, is pointwise asymptotic level c.
That is,

sup limsup Py(T,, rejects) = a.
#cOy n—oo

Remark

e Cannot substitute 6y for én in I; because we must estimate the nuisance parameters.



