
Stats 300b: Theory of Statistics Winter 2019

Lecture 8 – January 31

Lecturer: John Duchi Scribe: Chen Lu, Linjia Wu

󴿚 Warning: these notes may contain factual errors

Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-Statistics

• Projections in Hilbert spaces

• Conditional expectations

• Hájek projections

• Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:
Given a symmetric kernel function h : X r → R, the goal is to estimate

θ := E[h(X1, ..., Xr)], Xi
iid∼ P.

Define the U-Statistic as

Un :=
1󰀃
n
r

󰀄
󰁛

β⊆[n],|β|=r

h(Xβ).

For each c ∈ {0, . . . , r}, define

hc(x1:c) := E[h(X1:r|X1:c = x1:c].

and define
ζc := Var[hc(X1:c)] = Cov(h(XA), h(XB)),

where |A ∩B| = c.

Var(Un) =
r2

n
ζ1 +O(n−2),

1 Projections

Definition 1.1. A vector space H is a Hilbert space if it is a complete normed vector space with
inner product 〈·, ·〉, where the norm ||u||2 = 〈u, u〉 and

〈αx, y〉 = α〈x, y〉 = α〈y, x〉, all α ∈ R,

and
〈x+ y, u+ v〉 = 〈x, u〉+ 〈y, u〉+ 〈x, v〉+ 〈y, v〉.
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Example: Rn with 〈x, y〉 = xT y =
󰁓n

i=1 xiyi ♣

Example: L2(P ) = {f : X → R,
󰁕
f(x)2dP (x) < ∞} with 〈f, g〉 =

󰁕
f(x)g(x)dP (x), we have

〈f, g〉 ≤ ||f |||g||| by Cauchy-Schwartz inequality. ♣

Let S ⊆ H be a closed linear subspace of H (i.e. S contains 0 and all the linear combinations of
elements in itself).

Definition 1.2. For any v ∈ H, we define the projection of v onto S as

πS(v) := argmin
s∈S

{󰀂s− v󰀂22}.

Theorem 1. The projection πS(v) exists, is unique, and is unique and characterized by

〈v − πS(v), s〉 = 0 (1)

for all s ∈ S (orthogonality).

Example: In L2(P ), let S be a collection of random variables (or functions) with E(s2) < ∞ for
all s ∈ S and closed under linear combinations (i.e.∀s1, s2 ∈ S then α1s1 + α2s2 ∈ S). Then ŝ is a
projection of T onto S iff

E[(T − ŝ)s] = 0

for all s ∈ S. ♣

Proposition 2 (Moreau Decomposition). For any v ∈ H and S is a subspace, we have

||v||2 = ||π(v)||2 + ||v − π(v)||2.

Proof of Proposition
Since 〈v − π(v),π(v)〉 = 0, then

||v||2 = ||v − π(v) + π(v)||2 = ||π(v)||2 + ||v − π(v)||2 + 2〈v − π(v),π(v)〉 = 0.

Conditional Expectations(Projections in L2(P ))

Let’s define S = {linear span of g(Y ) for all measurable functions g and some random variable Y }.

Definition 1.3. Define conditional expectation as the projection of X onto S. That is how well
we can approximate X as the function of Y .

E[X|Y ] := Projections of X onto S
= Best ”predictor” of X onto S.

E[X|Y ] is the unique (up to measure 0 sets) function of Y such that

E [(X − E[X|Y ]) g(Y )] = 0

for all g ∈ S.
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A few consequences:

1. (Tower Property) E[X] = E[E[X | Y ]] (take g = 1)

2. For any measurable f , E[f(Y )X | Y ] = f(Y )E[X | Y ]

3. (Tower property) E: E[E[X|Y, Z]|Y ] = E[X|Y ]

Sketch of Proof
For 2,

E[f(Y )X − f(Y )E[X|Y ])g(Y )] = E[(X − E[X|Y ]f(Y )g(Y )] = 0

for all measurable g.

Consequence: This allows us to ignore smaller order staff!

Let Tn be random variables and Sn be a sequence of subspaces of L2(P ). Let’s define

Ŝn = πSn(Tn) = E[Tn|Sn].

Proposition 3. Let σ2(X) = Var(X), if σ2(Tn)

σ2(󰁥Sn)
→ 1 as n → ∞ then

Tn − E[Tn]

σ(Tn)
−

󰁥Sn − E[󰁥Sn]

σ(󰁥Sn)

p→ 0

Proof Let An = Tn−E[Tn]
σ(Tn)

− 󰁥Sn−E[󰁥Sn]

σ(󰁥Sn)
. Note that E[An] = 0. Thus, if we can show that Var(An) →

0, we are done.

Var(An) = Var

󰀣
Tn − E[Tn]

σ(Tn)

󰀤
+Var

󰀣
󰁥Sn − E[󰁥Sn]

σ(󰁥Sn)

󰀤
− 2Cov(Tn, 󰁥Sn)

σ(Tn)σ(󰁥Sn)

= 2− 2Cov(Tn, 󰁥Sn)

σ(Tn)σ(󰁥Sn)

Now using the fact that Tn − 󰁥Sn is orthogonal to 󰁥Sn we have:

Cov(Tn, 󰁥Sn) = E[Tn
󰁥Sn]− E[Tn]E[󰁥Sn]

= E[(Tn − 󰁥Sn + 󰁥Sn)󰁥Sn]− E[E[Tn | Sn]]E[󰁥Sn]

= E[(Tn − E[Tn | Sn])󰁥Sn] + E[󰁥S2
n]− E[󰁥Sn]

2

= E[󰁥S2
n]− E[󰁥Sn]

2

= Var(󰁥Sn).

Hence,

Var(An) = 2

󰀣
1− σ(󰁥Sn)

σ(Tn)

󰀤
→ 0

Which also gives us An → 0 in L2(P ).
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Hájek Projections

Lemma 4 (11.10 in VDV). Let X1, . . . , Xn be independent. Let S =

󰀫
n󰁛

i=1

gi(Xi) : gi ∈ L2(P )

󰀬
.

If E[T 2] < ∞, let 󰁥S = πS(T ), then

󰁥S =

n󰁛

i=1

E[T | Xi]− (n− 1)E[T ]. (2)

Proof Note that, by independence of Xis,

E [E[T | Xi] | Xj ] =

󰀫
E[T | Xi] if i = j,

E[T ] if i ∕= j.

If 󰁥S is as stated in Equation 2, we prove that T − 󰁥S is orthogonal to S. We have:

E[󰁥S | Xj ] = (n− 1)ET + E[T | Xj ]− (n− 1)ET
= E[T | Xj ]

Thus

E[(T − 󰁥S)gj(Xj)] = E[E[T − 󰁥S | Xj ]gj(Xj)]

= 0,

E

󰀵

󰀷(T − 󰁥S)
n󰁛

j=1

gj(Xj)

󰀶

󰀸 = 0.

Thus, T − 󰁥S must be orthogonal to S, so 󰁥S is the projection of T .

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

Sn =
󰁱 n󰁛

i=1

gi(Xi) : gi(Xi) ∈ L2(P )
󰁲
.

to approximate Un by a sum of independent random variables.

Theorem 5. Let h be a symmetric kernel (function) of order r and let E[h2] < ∞, Un be the
associated U-statistic, θ = E[Un] = E[h(X1, . . . , Xn)]. If 󰁥Un is the projection of Un−θ onto Sn then

󰁥Un =

n󰁛

i=1

E[Un − θ|Xi] =
r

n

n󰁛

i=1

h1(Xi)

where h1(x) = E[h(x,X2, ..., Xr)]− θ.
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Proof The first equality is just a direct application of Lemma 4, noting that E[Un − θ] = 0. We
now show the second equality. Let β ⊆ [n], |β| = r, then

E[h(Xβ)− θ|Xi] =

󰀫
0 i ∕∈ β

h1(Xi) i ∈ β
.

Then

E[Un − θ|Xi] =

󰀕
n

r

󰀖−1 󰁛

|β|=r

E[h(Xβ)− θ|Xi = x]

=

󰀕
n

r

󰀖−1 󰁛

|β|=r,i∈β
h1(Xi)

=

󰀕
n

r

󰀖−1󰀕n− 1

r − 1

󰀖
h1(Xi) =

r

n
h1(Xi)

It follows that

󰁥Un =

n󰁛

i=1

E[Un − θ|Xi] =
r

n

n󰁛

i=1

h1(Xi)

Theorem 6. Using the same notations as in the preceding theorem, we have:

1. √
n(Un − θ − 󰁥Un)

P−→ 0

2. √
n󰁥Un

d−→ N(0, r2ζ1)

3. √
n(Un − θ)

d−→ N(0, r2ζ1)

Proof
√
n󰁥Un

d−→ N(0, r2ζ1) is by direct application of the CLT.
Then, since

Var(Un) =
r2

n
ζ1 +O(n−2)

Var(󰁥Un) =
r2

n
ζ1

we have Var(Un)

Var(󰁥Un)
→ 1 as n → ∞.

Using, Property 3, we get that
√
n(Un − θ)−

√
n󰁥Un

P−→ 0
By application of Slutsky’s theorem we can conclude the desired results.
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Example 1 (Signed Rank Test): This example shows how the U-statistics can be useful be-
cause it requires minimal modelling assumptions. Consider θ = P[X1 + X2 > 0], with Un =󰀃
n
2

󰀄−1󰁓
i<j 1 {Xi +Xj > 0}. Let

H0 : {Distribution P of Xi is symmetric about 0 and has continuous CDF}
≡ {F (x) = P[X ≤ x] = 1− F (−x)∀x ∈ R}

Note that, given Xi,

h1(Xi) = E[1 {Xi +Xj > 0} | Xi]

= P[Xj > −Xi | Xi]

= 1− F (−Xi)

As a result, we have

󰁥Un =

n󰁛

i=1

E[Un − θ | Xi]

= − 2

n

n󰁛

i=1

(F (−Xi)− E[F (−Xi)])

Under H0, we have F (x) = 1 − F (x) and θ = 1
2 . Becuase we assumed that F (x) is continuous,

F (Xi) ∼ Unif[0, 1]. Thus we have

󰁥Un
d
=

2

n

n󰁛

i=1

(Yi −
1

2
)

where Yi
iid∼ Unif[0, 1]. Because the variance of a uniform random vairable is 1

12 , the central limit

theorem gives us
√
n󰁥Un

d→ N(0, 13). We can then test using quantiles of the normal distribution.
♣
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