Stats 300b: Theory of Statistics Winter 2019

Lecture 8 — January 31

Lecturer: John Duchi Scribe: Chen Lu, Linjia Wu

@ Warning: these notes may contain factual errors
Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-Statistics
e Projections in Hilbert spaces
e Conditional expectations
e Hijek projections
e Aymptotic normality of U-statistics
Recap: Recall these definitions that we set up last lecture:
Given a symmetric kernel function h : X — R, the goal is to estimate
0 :=Eh(X1,...X,)],X; < P.

Define the U-Statistic as ]

Up= 7 Y. h(Xp).

’”) BCInl,|Bl=r
For each ¢ € {0,...,r}, define

hc(mlzc) = E[h(Xlzr|X1:c = xl:c]-

and define
Ge = Var[he(X1:e)] = Cov(h(X4), h(XE)),
where |AN B| =c.

2
Var(U,,) = ECI + O(n_2),

1 Projections

Definition 1.1. A vector space H is a Hilbert space if it is a complete normed vector space with
inner product (-,-), where the norm ||ul|> = (u,u) and

(ax,y) = alz,y) = aly,x), dl a € R,

and
(x+y,u+v) = {(r,u) + (y,u) + (z,v) + (y,v).



Example: R" with (z,y) = 2Ty =" 29, &

Example: L?(P) = {f: X — R, [ f(z)?dP(z) < oo} with (f,g) = [ f(z)g(z)dP(z), we have
(f,9) <|Iflllgll| by Cauchy-Schwartz inequality. &

Let S C H be a closed linear subspace of H (i.e. S contains 0 and all the linear combinations of
elements in itself).

Definition 1.2. For any v € H, we define the projection of v onto S as

ms(v) := argmin{||s — vH%}
seS

Theorem 1. The projection ws(v) exists, is unique, and is unique and characterized by
(v—ms(v),s) =0 (1)
for all s € S (orthogonality).

Example: In L?(P), let S be a collection of random variables (or functions) with E(s?) < oo for
all s € S and closed under linear combinations (i.e.Vsy, so € S then a;s; + agsy € ). Then §is a
projection of T onto S iff

E[(T - 8)s] =0

forallse€S. &

Proposition 2 (Moreau Decomposition). For any v € H and S is a subspace, we have
1o]1? = {[m()|* + [|v = m(v)[|*.

Proof of Proposition
Since (v — 7(v), 7(v)) = 0, then

[0]* = |l = 7(v) + 7()[]* = [l7(W)|[* + [[v = 7 (W)|[* + 2(v = 7(v), 7(v)) = 0.

Conditional Expectations(Projections in L?(P))
Let’s define S = {linear span of g(Y") for all measurable functions g and some random variable Y'}.

Definition 1.3. Define conditional expectation as the projection of X onto S. That is how well
we can approrimate X as the function of Y.

E[X|Y] := Projections of X onto S
= Best "predictor” of X onto S.

E[X|Y] is the unique (up to measure 0 sets) function of Y such that
E[(X — B[X|V]) (V)] = 0

forallgeS.



A few consequences:
1. (Tower Property) E[X]| = E[E[X | Y]] (take g = 1)
2. For any measurable f, E[f(Y)X | Y] = f(Y)E[X | Y]
3. (Tower property) E: E[E[X|Y, Z]|Y]| = E[X|Y]

Sketch of Proof
For 2,
Ef(Y)X - fY)E[X[Y])g(Y)] = E[(X - E[X|Y]f(Y)g(Y)] =0

for all measurable g. O

Consequence: This allows us to ignore smaller order staff!
Let T}, be random variables and S,, be a sequence of subspaces of L?(P). Let’s define
S, =7s, (T) = E[T,|Sn).

Proposition 3. Let 02(X) = Var(X), zf (T”) — 1 as n — oo then

T, — K] n] S —E[S)] »
o(T,) T RE

Proof Let A, == (%[5"] — S”C:(?é;”]. Note that E[A,] = 0. Thus, if we can show that Var(A4,) —

0, we are done.

[
=E[(T, — S + gn)gn] —E[E[T, | S ]]E[gn]
= E((T5, — E[T» | Sul)Su] + E[S7] — E[S,)”
= E[S3] — E[S]?
= Var(An).

Hence,

Which also gives us A, — 0 in La(P).



Hajek Projections

Lemma 4 (11.10 in VDV). Let X, ..., X, be independent. Let S = {Zgz(XZ) L gi € LQ(P)}.
i=1
IfE[T?] < oo, let S = 75(T), then

S=>E[T'| X;] - (n— 1)E[T]. (2)

i=1
Proof Note that, by independence of X;s,

E[T| X iti=j,

E[E[T | Xi] | X;] = {E[T] if i # j.

If S is as stated in Equation 2, we prove that T — S is orthogonal to S. We have:

E[S | X;] = (n — 1)ET + E[T | X;] — (n — 1)ET

= E[T | Xj]
Thus
E[(T — 9)g;(X;)] = E[E[T — 5| X;]g;(X;)]
=0,
E|(T—58)) gi(X;)| =0
j=1
Thus, T — S must be orthogonal to S, so S is the projection of T'. O

2 Application to U-statistics

The main idea is to use (Hajek) projections onto sets of the form :
n

So={ > 9:(X) 1 u(X0) € La(P) }.
i=1

to approximate U, by a sum of independent random variables.

Theorem 5. Let h be a symmetric kernel (function) of order r and let E[h?] < oo, U, be the
associated U-statistic, 6 = E[U,] = E[h(X1,...,X,)]. If U, is the projection of U, —6 onto S,, then

U, = ;E[Un — X = %; hi(X;)

where hy(x) = E[h(z, X2, ..., X;)] — 6.



Proof The first equality is just a direct application of Lemma 4, noting that E[U,, — 0] = 0. We
now show the second equality. Let 8 C [n], || = r, then

0 i ¢

E[h(X;) — 0]Xi) = {hl ) i

Then

<

-1
E[U, — 0|X;] = <”) 3" Eh(Xg) — 61 X; = ]
18l=r

(), 2 o

|Bl=r,icp

It follows that

O
Theorem 6. Using the same notations as in the preceding theorem, we have
1. R
VU, —0—-TU,) 50
2. R
Vb, % N(0,r%¢)
3.
ViU, — 0) & N(0,7%¢)
Proof \/ﬁﬁn N N(0,72¢;) is by direct application of the CLT.
Then, since
2
Var(U,) = ﬁCl +0(n7?)
Var(U,) = —(1
n
Var(Un)
we have VarDo) — 1 as n — oo.
Using, Property 3, we get that /n(U, — 0) — VU, 5o
By application of Slutsky’s theorem we can conclude the desired results. O



Example 1 (Signed Rank Test): This example shows how the U-statistics can be useful be-
cause it requires minimal modelling assumptions. Consider § = P[X; + Xy > 0], with U,, =

(721)—1 >oic; L{Xi + X > 0} Let

Hy : {Distribution P of X; is symmetric about 0 and has continuous CDF'}
={F(z)=PX <z|]=1-F(—z)Vex e R}

Note that, given X,

h(Xi) =E1{X; + X; > 0} | X]
=PX; > -X; | X
=1-F(-X;)

As a result, we have

Un =Y E[U,— 0| X]]
=1

Under Hy, we have F(z) = 1 — F(z) and § = 3. Becuase we assumed that F(z) is continuous,
F(X;) ~ Unif]0, 1]. Thus we have

where V; % Unif[0, 1]. Because the variance of a uniform random vairable is &, the central limit

theorem gives us \/ﬁﬁn AN (0, %) We can then test using quantiles of the normal distribution.

[ )



