Stats 300b: Theory of Statistics Winter 2019

Lecture 9 — February 5

Lecturer: John Duchi Scribe: Brett Larsen

@ Warning: these notes may contain factual errors
Reading: van der Vaart 5.2, 19.1, 19.2

Outline: Uniform Laws of Large Numbers (ULLN)
e Argmax/argmin theorem
e Covering and bracketing numbers

e Metric entropies

1 Uniform laws of large numbers

Definition 1.1. Let F be a collection of functions f: X — R. Then F satisfies a uniform law of
large numbers (ULLN) for distribution P if

| P, — P||F := sup|P.f — Pf] 20,
feF

where Pf = [ fdP and P, =n~1 Y I | §x, is the empirical distribution of the sample {X1,..., X, }.

For notational simplicity, we have defined the F-norm of a measure as ||ul|z := supscz|[ f dul.
Then we have

1By = Pllr = supl > fe) ~Elf@]

Example 1 (Glivenko-Cantelli theorem): Let F = {f(x) =1{x <t},t € R} (the function class
of step-down functions) so that P, f = P(X <) for some ¢ € R. Then

sup|P,f — pf| = sup|P,(X < t) — P(X <t)| & 0.
feF teR
In fact, more is possible: the Dvoretzky-Kiefer-Wolfowitz inequality states that, for any € > 0,
ne
P(sup| P, (X <t)— P(X <t)] >€) < 2exp <—2> .
teR

i.e., exponential concentration. &



Why do we want ULLNs? They make consistency results much easier. Let’s consider a
“generic” consistency results with a ULLN:
Let © be some parameter space, £g: X — R some loss function, for example

lg = —logpg(x) where pyg is the density of X
Then define the risk R(0) = E[lg(X )] = Ply and the observed risk R,,(0) = P,{p.

Observation 1 (Simple consistency results). If F = {{p}pco satisfies a ULLN and {é\n}n is any
sequence of estimators such that

R,(0,) < inf R(0) + op(1),
0cO

then R(0,) 5 infg R() (i.e the risk is consistent).
Proof Assume w.lo.g. that 8* € argminy R(#). Then
R(B) — R(0%) = (R(n) — Ra(0)) + (Ra(Bn) — Ra(6%)) + (Ra(6°) — R(8"))
< SUP’Rn(G) - R(@)’ + Rn(é\n) - Rn(a*) + Rn(e*) - R(H*)
0cO

op(1) by assumption  op(1) by strong LLN

op(1) by ULLN

= op(1) + op(1) + 0p(1) 5 0.

Note that we are ignoring issues of measurability. We will only work with separable metric
spaces. ]

Corollary 2 (Argmax/argmin theorem). Let R be such that for all € > 0 there exits some 6 > 0
R(0) > R(6*) + 0 whenever d(6,0%) > e.

If F = {ly}oco satisfies a ULLN observation and there exist a sequence of estimators that satisfy
the conditions of observation 1, then
0, 5 0"

In other words, M-estimation yields consistent estimators.
Proof Pick any ¢ > 0. If d(é\n,ﬁ*) > €, then R(an) > R(0*)+6. If d(@n, 0*) >0
5 < R(8,) — R(6%) < sup| Ry (6) = R(6)| + (Ru(Br) — Ra(6)) + (Ra(6%) — R(6"))
0O

< op(1)

This is a contradiction = d(6,,,0%) 2 0 as desired. O

Intuitivley, the above proof shows that the empricial risk loss surface being close to the risk loss
surface means we can’t move the minimizer too far away.



How do we prove ULLNs? Covering and understanding the “massiveness” of sets of functions.
We will in general follow the process:

1. Choose certain exemplar functions {f;}
2. Put balls around each function (functions that are similar in some metric)

3. If we can aruge that |P,f — Pf]| is similar within each ball, then we only need to show
convergence of the individual {f;}

Definition 1.2. Let (O, p) be a metric space (may also be a semi- or pseudo-metric):
p: O x 60 = Rxg.
For e > 0, we say that {6 f;l is an e-cover of © if, for all 0 € O, there exists an i such that
d(6,0") < e.
(Note for us it is note necessary that 0° belong to ©)
Definition 1.3. The e-covering number of © is the smallest size of e-covers. ie,
N(©,p,€) =inf{N € Zsq : there exists an e-cover {0}, of O}.
The metric entropy is then log N(©, p,€).
Definition 1.4. For § > 0, a set {0°}}Y., C © is a 6-packing of © if, for alli # j
p(6,67) > 6.
The packing number is then
M(0©,p,8) = sup{M € Zx : there exists a 5-cover {6°}M, of ©}.
Observation 3. (Relationship between packing and covering numbers) For all € > 0,
M(2¢) < N(e) < M(e).

Example 2 (Covering numbers of norm balls by volume arguments): Let © = {# € R?: |0 < r}
for some norm || - || on R? and r > 0. Using p(6,0') = ||@ — &’||, we can bounde the covering number

as follows:
r d 2r d
<> SN(@,p,e)S(l—i—) .
€ €

Proof Let B={f#cR?:||§]| <1} be the unit ball. Observe that we have:

Vol(©)  Vol(rB) _ r4

Vol(eB)  Vol(eB) €’

Hence, any covering of © must have at least (r/€)? e-balls to cover the volume, and so

N(©, p,¢) > (’")d.

€

3



Conversely, suppose {#'}4, is a maximal e-packing of © = rB. Then the ¢’ + Be/2 are disjoint,
and so
Mo e €
H((0+ =B | C — |B.
(7 +5m)< (r+5)

M

zn:Vol(Hi—i—Be/Q V01<U (0° + Be/2) )

=1 =
< Vol ((r +¢/2)B)
= (r 4+ ¢/2)? Vol(B).

Therefore, we have that

Using the relationship between covering/pakcing numbers, we can obtain the other side of the

inequality: d d
(r+¢€/2) 2
N <M< ~—L2 — (142
()" (+%)

Finally, in terms of metric entropy, we have obtained the following bound:

2
dlog " <log N(e) < dlog (1 + T)
€ €

2 Bracketing number

When dealing with functional spaces F = {f : X — R}, a similar notion to covering numbers is
the bracketing number, namely:

Definition 2.1. Let F C {f X — ]R} be a collection of functions, and p a measure on X. A set
{llywil}il, C {x = R}
(i.e. Li,uj: X = R) is ae - bracket of F in Ly(p), p > 1 if
Vf e F 3i such that [; < f(z) <p; and ||u; — liHLp(u) <e

From e-brackets, we similarly get bracketing numbers by taking the infimum over IV:
Definition 2.2. The bracketing number of F is
Ny (F,Lp(p),€) :=inf {N e N : 3 an e-bracket {[ll,uz]}fil of F in Lp(u)}
Example 3 (Lipschitz loss functions): Let © C R? be compact, which implies that, for all € > 0,

we have N(O, ||| ,€) < oco. Let F = {my : 6 € ©} where my are L(X)-Lipschitz in 6, namely, for
all x and 61, 05:

Img, (z) — ma, (z)| < L(z) [|6h — 62



Then, assuming that E [L(X)] < oo:

NH (I,Ll,éE [L(X)]) < N(®7 HH 76/2)

Proof Let {Hi}i]\il be an €/2 -covering of O, then let’s define :

wi(w) : = m,(¢) + 5 L(x)
€
li(x) : = mp,(z) — iL(as)
We know that for any 6 € ©, 30; s.t. |0 — 6;|| < 5, and from Lipschitz properties of mg, we have:

Img () —mg, (z)] <

Thus, for all z € X:

li(z) < mg(z) < ui(x)
Asforall 1 <i < N, E[u;(X) —l;(X)] = eE[L(X)] (we have e-separation), this ends the proof. &

Remark In the previous example, we have used Lipshitz functions combined with a compact
parameter sapce to get bracketing numbers in L;. Generally, if E[L,(X)] < co, we can get control
over Npj(F, Ly(p), €).

3 Examples and theorems of uniform laws of large numbers

Theorem 4 (First ULLN). Let F C {X — R} satisfy:
Ny (F, Lp,€) < oo for all e >0
Then , under i.i.d. sampling
1P = Plly = sup | Pof = Pf| 50
ferF
Proof For any given € > 0, let {[l;,u;]}Y, be an e-bracket for F. Then for any f € F, there
exists i € [N] s.t [; < f < w;, and therefore we have:

:Pnui—Pu,-—i-Pui—Pli
< (P, — P)u; +e.
Similarly:

Pf—P,f < Pu; — Pyl;
<(P,—P)l;+e.



This leads to:
[P — Pllz=sup |Pf — Pf]
feF
< — . )
> 1r§nia§)](\f’<Pn P)(ui +1;)| + ¢

=o0p(1) + €

as there are finitely many terms in the maximum.



