
Stats 300b: Theory of Statistics Winter 2019

Lecture 9 – February 5

Lecturer: John Duchi Scribe: Brett Larsen

� Warning: these notes may contain factual errors

Reading: van der Vaart 5.2, 19.1, 19.2

Outline: Uniform Laws of Large Numbers (ULLN)

• Argmax/argmin theorem

• Covering and bracketing numbers

• Metric entropies

1 Uniform laws of large numbers

Definition 1.1. Let F be a collection of functions f : X → R. Then F satisfies a uniform law of
large numbers (ULLN) for distribution P if

‖Pn − P‖F := sup
f∈F
|Pnf − Pf |

p→ 0,

where Pf =
∫
fdP and Pn = n−1

∑n
i=1 δXi is the empirical distribution of the sample {X1, . . . , Xn}.

For notational simplicity, we have defined the F-norm of a measure as ‖µ‖F := supf∈F |
∫
f dµ|.

Then we have

‖Pn − P‖F := sup
f∈F
| 1
n

n∑
i=1

f(xi)− E[f(x)]|

Example 1 (Glivenko-Cantelli theorem): Let F = {f(x) = 1 {x ≤ t} , t ∈ R} (the function class
of step-down functions) so that Pnf = P (X ≤ t) for some t ∈ R. Then

sup
f∈F
|Pnf − pf | = sup

t∈R
|Pn(X ≤ t)− P (X ≤ t)| p→ 0.

In fact, more is possible: the Dvoretzky-Kiefer-Wolfowitz inequality states that, for any ε > 0,

P
(

sup
t∈R
|Pn(X ≤ t)− P (X ≤ t)| ≥ ε

)
≤ 2 exp

(
−nε

2

2

)
.

i.e., exponential concentration. ♣
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Why do we want ULLNs? They make consistency results much easier. Let’s consider a
“generic” consistency results with a ULLN:

Let Θ be some parameter space, `θ : X → R some loss function, for example

`θ = − log pθ(x) where pθ is the density of X

Then define the risk R(θ) = E[`θ(X)] = P`θ and the observed risk Rn(θ) = Pn`θ.

Observation 1 (Simple consistency results). If F = {`θ}θ∈Θ satisfies a ULLN and {θ̂n}n is any
sequence of estimators such that

Rn(θ̂n) ≤ inf
θ∈Θ

R(θ) + oP(1),

then R(θ̂n)
p→ infθ R(θ) (i.e the risk is consistent).

Proof Assume w.l.o.g. that θ∗ ∈ argminθ R(θ). Then

R(θ̂n)−R(θ∗) =
(
R(θ̂n)−Rn(θ̂n)

)
+
(
Rn(θ̂n)−Rn(θ∗)

)
+
(
Rn(θ∗)−R(θ∗)

)
≤ sup

θ∈Θ
|Rn(θ)−R(θ)|︸ ︷︷ ︸
oP(1) by ULLN

+Rn(θ̂n)−Rn(θ∗)︸ ︷︷ ︸
oP(1) by assumption

+ Rn(θ∗)−R(θ∗)︸ ︷︷ ︸
oP(1) by strong LLN

= oP(1) + oP(1) + oP(1)
p→ 0.

Note that we are ignoring issues of measurability. We will only work with separable metric
spaces.

Corollary 2 (Argmax/argmin theorem). Let R be such that for all ε > 0 there exits some δ > 0

R(θ) ≥ R(θ∗) + δ whenever d(θ, θ∗) ≥ ε.

If F = {`θ}θ∈Θ satisfies a ULLN observation and there exist a sequence of estimators that satisfy
the conditions of observation 1, then

θ̂n
p→ θ∗.

In other words, M-estimation yields consistent estimators.

Proof Pick any ε > 0. If d(θ̂n, θ
∗) ≥ ε, then R(θ̂n) ≥ R(θ∗) + δ. If d(θ̂n, θ

∗) ≥ 0

δ ≤ R(θ̂n)−R(θ∗) ≤ sup
θ∈Θ
|Rn(θ)−R(θ)|+

(
Rn(θ̂n)−Rn(θ∗)

)
+
(
Rn(θ∗)−R(θ∗)

)
≤ oP(1)

This is a contradiction =⇒ d(θ̂n, θ
∗)

p→ 0 as desired.

Intuitivley, the above proof shows that the empricial risk loss surface being close to the risk loss
surface means we can’t move the minimizer too far away.
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How do we prove ULLNs? Covering and understanding the “massiveness” of sets of functions.
We will in general follow the process:

1. Choose certain exemplar functions {fi}

2. Put balls around each function (functions that are similar in some metric)

3. If we can aruge that |Pnf − Pf | is similar within each ball, then we only need to show
convergence of the individual {fi}

Definition 1.2. Let (Θ, ρ) be a metric space (may also be a semi- or pseudo-metric):

ρ : Θ×Θ→ R≥0.

For ε > 0, we say that {θi}Ni=1 is an ε-cover of Θ if, for all θ ∈ Θ, there exists an i such that

d(θ, θi) ≤ ε.

(Note for us it is note necessary that θi belong to Θ)

Definition 1.3. The ε-covering number of Θ is the smallest size of ε-covers. ie,

N(Θ, ρ, ε) = inf{N ∈ Z≥0 : there exists an ε-cover {θi}Ni=1 of Θ}.

The metric entropy is then logN(Θ, ρ, ε).

Definition 1.4. For δ > 0, a set {θi}Ni=1 ⊆ Θ is a δ-packing of Θ if, for all i 6= j

ρ(θi, θj) > δ.

The packing number is then

M(Θ, ρ, δ) = sup{M ∈ Z≥0 : there exists a δ-cover {θi}Mi=1 of Θ}.

Observation 3. (Relationship between packing and covering numbers) For all ε > 0,

M(2ε) ≤ N(ε) ≤M(ε).

Example 2 (Covering numbers of norm balls by volume arguments): Let Θ = {θ ∈ Rd : ‖θ‖ ≤ r}
for some norm ‖ · ‖ on Rd and r > 0. Using ρ(θ, θ′) = ‖θ− θ′‖, we can bounde the covering number
as follows: (

r

ε

)d
≤ N(Θ, ρ, ε) ≤

(
1 +

2r

ε

)d
.

Proof Let B = {θ ∈ Rd : ‖θ‖ ≤ 1} be the unit ball. Observe that we have:

Vol(Θ)

Vol(εB)
=

Vol(rB)

Vol(εB)
=
rd

εd
.

Hence, any covering of Θ must have at least (r/ε)d ε-balls to cover the volume, and so

N(Θ, ρ, ε) ≥
(
r

ε

)d
.
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Conversely, suppose {θi}Mi=1 is a maximal ε-packing of Θ = rB. Then the θi+Bε/2 are disjoint,
and so

M⊎
i=1

(
θi +

ε

2
B

)
⊆
(
r +

ε

2

)
B.

Therefore, we have that

n∑
i=1

Vol(θi + Bε/2) = Vol

( M⊎
i=1

(θi + Bε/2)

)
≤ Vol

(
(r + ε/2)B

)
= (r + ε/2)d Vol(B).

Using the relationship between covering/pakcing numbers, we can obtain the other side of the
inequality:

N(ε) ≤M(ε) ≤ (r + ε/2)d(
ε
2

)d =

(
1 +

2r

ε

)d
Finally, in terms of metric entropy, we have obtained the following bound:

d log
r

ε
≤ logN(ε) ≤ d log

(
1 +

2r

ε

)
♣

2 Bracketing number

When dealing with functional spaces F = {f : X → R}, a similar notion to covering numbers is
the bracketing number, namely:

Definition 2.1. Let F ⊆
{
f : X → R

}
be a collection of functions, and µ a measure on X . A set

{[li, ui]}Ni=1 ⊂ {X → R}

(i.e. `i, ui : X → R) is a ε - bracket of F in Lp(µ), p ≥ 1 if

∀f ∈ F ∃i such that li ≤ f(x) ≤ µi and ‖ui − li‖Lp(µ) ≤ ε

From ε-brackets, we similarly get bracketing numbers by taking the infimum over N :

Definition 2.2. The bracketing number of F is

N[]

(
F , Lp(µ), ε

)
:= inf

{
N ∈ N : ∃ an ε-bracket {[li, ui]}Ni=1 of F in Lp(µ)

}
Example 3 (Lipschitz loss functions): Let Θ ⊂ Rd be compact, which implies that, for all ε > 0,
we have N(Θ, ‖·‖ , ε) < ∞. Let F = {mθ : θ ∈ Θ} where mθ are L(X)-Lipschitz in θ, namely, for
all x and θ1, θ2:

|mθ1(x)−mθ2(x)| ≤ L(x) ‖θ1 − θ2‖
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Then, assuming that E [L(X)] <∞:

N[] (F , L1, εE [L(X)]) ≤ N(Θ, ‖·‖ , ε/2)

Proof Let
{
θi
}N
i=1

be an ε/2 -covering of Θ, then let’s define :

ui(x) : = mθi(x) +
ε

2
L(x)

li(x) : = mθi(x)− ε

2
L(x)

We know that for any θ ∈ Θ, ∃θi s.t. ‖θ − θi‖ ≤ ε
2 , and from Lipschitz properties of mθ, we have:

|mθ(x)−mθi(x)| ≤ L(x) ‖θ − θi‖

≤ ε

2
L(x).

Thus, for all x ∈ X :

li(x) ≤ mθ(x) ≤ ui(x)

As for all 1 ≤ i ≤ N , E [ui(X)− li(X)] = εE [L(X)] (we have ε-separation), this ends the proof. ♣

Remark In the previous example, we have used Lipshitz functions combined with a compact
parameter sapce to get bracketing numbers in L1. Generally, if E[Lp(X)] <∞, we can get control
over N[](F , Lp(µ), ε).

3 Examples and theorems of uniform laws of large numbers

Theorem 4 (First ULLN). Let F ⊂ {X → R} satisfy:

N[] (F , Lp, ε) <∞ for all ε > 0

Then , under i.i.d. sampling

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

p→ 0

Proof For any given ε > 0, let {[li, ui]}Ni=1 be an ε-bracket for F . Then for any f ∈ F , there
exists i ∈ [N ] s.t li ≤ f ≤ ui, and therefore we have:

Pnf − Pf ≤ Pnui − Pli
= Pnui − Pui + Pui − Pli
≤ (Pn − P )ui + ε.

Similarly:

Pf − Pnf ≤ Pui − Pnli
≤ (Pn − P )li + ε.
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This leads to:

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

≤ max
1≤i≤N

|(Pn − P )(ui + li)|+ ε

= op(1) + ε

as there are finitely many terms in the maximum.
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