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Lecture 13 — February 19
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@ Warning: these notes may contain factual errors

Outline:
e concentration inequalities for functions with bounded differences
e ULLN for bounded class via concentration and chaining

e growth rates, moduli of continuity
Reading: VDV 18-19, HDP 8

Recap: Recall that if a process {X;}er is sub-Gaussian, i.e.

A2d(s,t)?
Eexp(M(X, - X)) < exp(20 ) o e 7
then 3C' < oo such that
diam(7T)
E[sup X¢] < C V0oeg N(T,d,e)de
teT 0

where N is the covering number. As a corollary, if we define the entropy integral

J(T;(S):/ V1og N(T,d,e)de
é
Then

Efsup X;] < C(E sup [X; — Xi[) + J(T70)
teT d(t,s)<d

where we note that the integral in J(7'; ) has upper limit diam(7") since for ¢ > diam(7T’), covering
number is 1.

Example: Let F C {X — R} be a VC class, with || f|jcc < b for all f € F. Then
1
0f._ § : (X
\/ﬁPnf,_ \/ﬁ : Ezf(Xz)

where ¢; are iid Rademacher, is sub-Gaussian for fixed X1.,, in terms of the || - |[1,(p,) norm.
Applying chaining, we obtain

Vinklsup [P < C [\ flog N(E . 2)de =
ferF 0



Recall the following bound on the covering number for uniformly bounded VC class F:

b T
Sup N(E |-\l (py2) < () e

< C,«(l + Q)TVC(]'—)
g

Applying this we have

b
b
*gC/ \/C—FVC(]:)log(l—i-E)dE
0

b b
< C/O Wde <C\VC(F)-b

which gives the bound

Efsup [P2f]] < Cby/ L)
feF n

1 Concentration Inequalities(revisited)

Remark Often we want to understand concentration of more sophisticated things than iid sums,
e.g. supser | Puf — Pf|, which is what we care about for ULLN. We want to answer the following
question: If Xj., are independent, when does f(Xi.,) concentrate around Ef(Xy.,), where f :
X™ — R? The idea is that if f depends “little” on individual X;, there should be concentration.
We use bounded differences and martingale methods to show this.

Definition 1.1. A sequence {X;} adapted to a filtration Fi C Fo C ... (increasing sequence of
o-fields) is a martingale difference sequence (MGD) if

o X, € F; foranyie N
e E[X;|Fi—1] =0 for any i € N.

Recall M, = 1" | X; is associated martingale (X; = M; — M;_1) and note that E[M,, | Fi—1] =
M,_1.

Definition 1.2. Let X; be a MGD, it is 6?-sub-Gaussian if

252
Elexp(AX:) | Fint] < exp(“ %)

for all i € N.

Theorem 1. If {X;} are 0?-sub-Gaussian MGD, then

n
M,, = ZXZ»
=1

. n 2 .
is Y i 05 -sub-Gaussian.



Proof We have
- N AXn . AT X -
Elexp(A ;:1 X;)]|=E [IE [e | Fn 1} E [exp LA F 1”

\2o2

ny . E
2 )

< exp(

n—1
exp(A Y X)
i=1

and proof follows by induction. O

Corollary 2. (Azuma-Hoeffding) Under conditions of the previous theorem, we have the bound

P(lznjx > 1) < exp( nt? )

. i Z ) SEXPITTT = 2

n i=1 25 Zz 0;

Example: Recall that, if | X;| < ¢;, then 0? < ¢Z, so the previous bound implies

nt?

1< t
P(— ZXi >t) <exp(—-7—=3)
n i=1 25 Zz 022

2 Martingales and Bounded Differences

Let {X;}!'; be independent, X; € X. Let f : X" — R. How to use the previous results about
martingale to control f(Xi.,) — E[f(X1.,)] Doob martingale provides a useful construction for
transforming f(X1.n,) — E[f(X1.n)] with f: ™ — R into a sum of MGDs.
2.1 Doob martingale
Definition 2.1. Let f : X™ — R and X; be random variables. Let F; = o(X1,...,X;). Define
Di:=E[f(X1n) | Fil —E[f(X1:n) | Fi1]

Then D;’s are called the Doob M GDs.

Note that

E[D; | Fi-1] =0
Z D; = f(Xlrn) - E[f(Xltn)]
=1

By the previous theorem, we see that if D;’s are sub-Gaussian, so is f(Xi.,) — E[f(X1.n)]. The
question becomes: for what f’s are D;’s small? The answer is the class of functions f with bounded
differences.

2.2 Bounded differences
Definition 2.2. A function f: X™ — R has bounded differences if

sup ’f(Xln) - f(Xlzn—17 X@{7Xi+1:n)’ < (&
X1;n€X",X{€X



Example: Let X € [-1,1] and f(X1,) = X, = 23, X;, then

1 2
|f(X1n) — f(X1n-1, X, Xig1m)] < E‘Xi - Xj| <=

3

Theorem 3. (McDiarmid’s inequality) If X; are independent, f has bounded differences, then

22

P(f(Xln) - ]Ef(Xln) > t) < exp(_ni
D ic1 G
and similarly for lower tail.

2
Proof It suffices to show that bounded differences implies D;’s are %—sub—Gaussian, since then
the Azuma-Hoeffding bound will imply the desired bound. We have

D; = E[f(X1:n) | Fra] — E[f (Xan) | Friim1]

= /f(Xlzi,X¢+1:n)dP"_i(Xz‘+1:n) - /f(Xlzi17XiaXiH:n)dP(Xi)dPn_i(Xi“:”)

= // [f(Xrim1, X], Xiim) — [(X1:i1, Xo, Xigim) | dP(X3)dP" ™ (Xis1m)

2
The term in the integrand is bounded above by ¢;, so that D; is %—sub—Gaussian. O

Example Supremum of bounded function classes Let F C {X — R} and assume |f(X)| € [a, b].
Suppose P, P, differ only in X; and Xj. Then the supremum sup;|P,f — Pf| has bounded
differences:

Sup |Pof — Pf|— sup |P)f— Pf|
< Sl;p‘Pnf — Pf|—|P,f — Pf|

triangle

< sup |P.f — P, f]

b_
= sup | F(Xi) — F(X])|/n < —2
feF

Corollary 4. Let F C {X — [a,b]}. Then

ont?

> t) < exp(—m)

Proof Set c? = “’;7;‘)2 in McDiarmid. O

P<Sup’Pnf_Pf|_E Sup|Pnf_Pf’
feFr feF

If we want ULLN for bounded class F, all we need is control over E| P, — P||». But this is
precisely what we can do with chaining. Applying the bound on E|| P, — P||z, we get the following
convergence rate result.



Corollary 5. Let F be a bounded VC class, f(z) € [a,b]. Then

2
P(HPn—Pufzc rew )+t>éexp(— Sl

(b—a)?
where C' depends on the VC class bound.
As a consequence, letting F = {1(X < t),t € R}, then
d 2
P(sup |P,(X <t) — P(X <t)]| > Cy/—+¢) < exp(—2ne”)
teRd n

which is the DKW inequality, up to sharp constants.

3 Convergence Rates

Next we move on to rates of convergence for model parameters, which are solutions of optimization
problems. Our setting is empirical minimization (M-estimation).
Let £: ©® x X — R be the loss function and

L) := E(£(6; X))
Ln(0) := Pul(6; X)

If

0, = arg mein L,(0)
0" = argmin L(0)

How quickly does 6, — 6*? We hope that the growth in L near #* > variation of Ly (0) — L, (6*)
for # near #*. Our goal is to show L, (0) > L, (0*) for # “far enough” from 6*.



