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� Warning: these notes may contain factual errors

Outline:

• concentration inequalities for functions with bounded differences

• ULLN for bounded class via concentration and chaining

• growth rates, moduli of continuity

Reading: VDV 18-19, HDP 8

Recap: Recall that if a process {Xt}t∈T is sub-Gaussian, i.e.

E exp(λ(Xs −Xt)) ≤ exp(
λ2d(s, t)2

2
), ∀s, t ∈ T

then ∃C <∞ such that

E[sup
t∈T

Xt] ≤ C
∫ diam(T )

0

√
logN(T, d, ε)dε

where N is the covering number. As a corollary, if we define the entropy integral

J(T ; δ) =

∫ ∞
δ

√
logN(T, d, ε)dε

Then

E[sup
t∈T

Xt] ≤ C(E sup
d(t,s)≤δ

|Xt −Xs|) + J(T ; δ)

where we note that the integral in J(T ; δ) has upper limit diam(T ) since for ε > diam(T ), covering
number is 1.

Example: Let F ⊂ {X → R} be a VC class, with ‖f‖∞ ≤ b for all f ∈ F . Then

√
nP 0

nf :=
1√
n

∑
i

εif(Xi)

where εi are iid Rademacher, is sub-Gaussian for fixed X1:n, in terms of the ‖ · ‖L2(Pn) norm.
Applying chaining, we obtain

√
nE[sup

f∈F
|P 0
nf |] ≤ C

∫ ∞
0

√
logN(F, ‖ · ‖L2(Pn), ε)dε = ∗
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Recall the following bound on the covering number for uniformly bounded VC class F :

sup
P
N(F, ‖ · ‖Lr(P ), ε) ≤ cr(

b

ε
)rV C(F)

≤ cr(1 +
b

ε
)rV C(F)

Applying this we have

∗ ≤ C
∫ b

0

√
C + V C(F) log(1 +

b

ε
)dε

≤ C
∫ b

0

√
1 + V C(F) · b

ε
dε ≤ C

√
V C(F) · b

which gives the bound

E[sup
f∈F
|P 0
nf |] ≤ Cb

√
V C(F)

n

1 Concentration Inequalities(revisited)

Remark Often we want to understand concentration of more sophisticated things than iid sums,
e.g. supf∈F |Pnf − Pf |, which is what we care about for ULLN. We want to answer the following
question: If X1:n are independent, when does f(X1:n) concentrate around Ef(X1:n), where f :
X n → R? The idea is that if f depends “little” on individual Xi, there should be concentration.
We use bounded differences and martingale methods to show this.

Definition 1.1. A sequence {Xi} adapted to a filtration F1 ⊂ F2 ⊂ . . . (increasing sequence of
σ-fields) is a martingale difference sequence (MGD) if

• Xi ∈ Fi for any i ∈ N

• E[Xi|Fi−1] = 0 for any i ∈ N.

Recall Mn =
∑n

i=1Xi is associated martingale (Xi = Mi −Mi−1) and note that E[Mn | Fi−1] =
Mn−1.

Definition 1.2. Let Xi be a MGD, it is δ2i -sub-Gaussian if

E[exp(λXi) | Fi−1] ≤ exp(
λ2δ2i

2
)

for all i ∈ N.

Theorem 1. If {Xi} are σ2i -sub-Gaussian MGD, then

Mn :=

n∑
i=1

Xi

is
∑n

i=1 σ
2
i -sub-Gaussian.
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Proof We have

E[exp(λ

n∑
i=1

Xi)] = E
[
E
[
eλXn | Fn−1

]
· E
[
expλ

∑n−1
i=1 Xi | Fn−1

]]
≤ exp(

λ2σ2n
2

) · E

[
exp(λ

n−1∑
i=1

Xi)

]
and proof follows by induction.

Corollary 2. (Azuma-Hoeffding) Under conditions of the previous theorem, we have the bound

P(
1

n

n∑
i=1

Xi ≥ t) ≤ exp(− nt2

2 1
n

∑
i σ

2
i

)

Example: Recall that, if |Xi| ≤ ci, then σ2i ≤ c2i , so the previous bound implies

P(
1

n

n∑
i=1

Xi ≥ t) ≤ exp(− nt2

2 1
n

∑
i c

2
i

)

2 Martingales and Bounded Differences

Let {Xi}ni=1 be independent, Xi ∈ X . Let f : X n → R. How to use the previous results about
martingale to control f(X1:n) − E[f(X1:n)] Doob martingale provides a useful construction for
transforming f(X1:n)− E[f(X1:n)] with f : X n → R into a sum of MGDs.

2.1 Doob martingale

Definition 2.1. Let f : X n → R and Xi be random variables. Let Fi = σ(X1, . . . , Xi). Define

Di : = E [f(X1:n) | Fi]− E [f(X1:n) | Fi−1]

Then Di’s are called the Doob MGDs.

Note that

E[Di | Fi−1] = 0
n∑
i=1

Di = f(X1:n)− E[f(X1:n)]

By the previous theorem, we see that if Di’s are sub-Gaussian, so is f(X1:n) − E[f(X1:n)]. The
question becomes: for what f ’s are Di’s small? The answer is the class of functions f with bounded
differences.

2.2 Bounded differences

Definition 2.2. A function f : X n → R has bounded differences if

sup
X1:n∈Xn,X′i∈X

|f(X1:n)− f(X1:n−1, X
′
i, Xi+1:n)| ≤ ci
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Example: Let X ∈ [−1, 1] and f(X1:n) = Xn = 1
n

∑
iXi, then

|f(X1:n)− f(X1:n−1, X
′
i, Xi+1:n)| ≤ 1

n
|Xi −X ′i| ≤

2

n

Theorem 3. (McDiarmid’s inequality) If Xi are independent, f has bounded differences, then

P(f(X1:n)− Ef(X1:n) ≥ t) ≤ exp(− 2t2∑n
i=1 c

2
i

)

and similarly for lower tail.

Proof It suffices to show that bounded differences implies Di’s are
c2i
4 -sub-Gaussian, since then

the Azuma-Hoeffding bound will imply the desired bound. We have

Di = E[f(X1:n) | F1:i]− E[f(X1:n) | F1:i−1]

ind
=

∫
f(X1:i, Xi+1:n)dPn−i(Xi+1:n)−

∫
f(X1:i−1, Xi, Xi+1:n)dP (Xi)dP

n−i(Xi+1:n)

=

∫ ∫ [
f(X1:i−1, X

′
i, Xi+1:n)− f(X1:i−1, Xi, Xi+1:n)

]
dP (Xi)dP

n−i(Xi+1:n)

The term in the integrand is bounded above by ci, so that Di is
c2i
4 -sub-Gaussian.

Example Supremum of bounded function classes Let F ⊂ {X → R} and assume |f(X)| ∈ [a, b].
Suppose Pn, P

′
n differ only in Xi and X ′i. Then the supremum supf |Pnf − Pf | has bounded

differences:

sup
f
|Pnf − Pf | − sup

f
|P ′nf − Pf |

≤ sup
f
|Pnf − Pf | − |P ′nf − Pf |

triangle
≤ sup

f
|Pnf − P ′nf |

= sup
f∈F
|f(Xi)− f(X ′i)|/n ≤

b− a
n

Corollary 4. Let F ⊂ {X → [a, b]}. Then

P

(
sup
f∈F
|Pnf − Pf | − E

[
sup
f∈F
|Pnf − Pf |

]
≥ t

)
≤ exp(− 2nt2

(b− a)2
)

Proof Set c2i = (b−a)2
n2 in McDiarmid.

If we want ULLN for bounded class F , all we need is control over E‖Pn − P‖F . But this is
precisely what we can do with chaining. Applying the bound on E‖Pn−P‖F , we get the following
convergence rate result.
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Corollary 5. Let F be a bounded VC class, f(x) ∈ [a, b]. Then

P

(
‖Pn − P‖F ≥ C

√
V C(F)

n
+ t

)
≤ exp(− 2nt2

(b− a)2
)

where C depends on the VC class bound.

As a consequence, letting F = {1(X ≤ t), t ∈ Rd}, then

P(sup
t∈Rd

|Pn(X ≤ t)− P (X ≤ t)| ≥ C
√
d

n
+ ε) ≤ exp(−2nε2)

which is the DKW inequality, up to sharp constants.

3 Convergence Rates

Next we move on to rates of convergence for model parameters, which are solutions of optimization
problems. Our setting is empirical minimization (M-estimation).
Let ` : Θ×X → R be the loss function and

L(θ) := E(`(θ;X))

Ln(θ) := Pn`(θ;X)

If

θ̂n = arg min
θ
Ln(θ)

θ∗ = arg minL(θ)

How quickly does θ̂n → θ∗? We hope that the growth in L near θ∗ � variation of Ln(θ)− Ln(θ∗)
for θ near θ∗. Our goal is to show Ln(θ) > Ln(θ∗) for θ “far enough” from θ∗.
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