Stats 300b: Theory of Statistics Winter 2019

Lecture 15 — February 26

Lecturer: John Duchi Scribe: Dan Kluger

@ Warning: these notes may contain factual errors
Reading: There is no reading corresponding to this lecture.

Oultline:
e Gaussian Sequence Models

— Hard Thresholding
— Soft Thresholding

e Basis Pursuit/Noiseless recovery

— l; -relaxations

— Isometry properties of matrices

1 Gaussian Sequence Model Recap

Recall the Gaussian Sequence Model that Y = 6 + oe where § € R" and € ~ N(0, I,,).
Question: When can we recover € to reasonable accuracy?

Answer: When using structural (sparsity) assumptions on 6.
n
Assume: 0 is k-sparse, meaning that ||0]|o = > 1(0; #0) < k.
i=1
Goal: Use k-sparse assumption on @ to achieve better MSE than the naive estimator %€ =Y

2 Hard Thresholding for Gaussian Sequence Model

For the Gaussian Sequence Model, a hard thresholding estimator is an estimator given by

;)Y i >T
Tlo ity <

for some threshold 7 > 0.

Idea: Since ||€]|oc < v/2log(n) we can set 7 ~ 04/2log(n), and in such a case any non-zero
entries of 6 should be "true” non-zero entries in 6.



2.1 Upper bound on /; risk of the Hard Thresholding Estimator

We will now compute an upper bound on the ls risk of the Hard thresholding estimator for an
arbitrary 7. To do this let S = {j € [n] : 0; # 0} (i.e let S be the support of #). We will first find
an upperbound on E[(éj —0;)? for j€ S. For j € S,

E[(6; — 0,)%] < E[(Y; — 0;)%] +65 P(|Y;] < 7)

:a‘2 ETQ

We will now find an upper bound on 75. To do so first consider the case where §; > 7. Note that
in this case

0j+o€j| <T=0j+0e; <T7=>0; —7 < —0€; = (|0;| —7)+ < —0¢j

Thus noting that —oe; ~ N(0, 0?), and thus —0€; is o%-subgaussian, by Chernoff’s bound and the
fact that |0; + €| <7 = (|0;| — 7)+ < —o¢; in the case where §; > 7 we have that

—(16;] — 7)2
P(0; + 06| <7) < P =06 > ([0 7)) < exp <J2’02+>

202
and finally this inequality holds trivially in the case where |f;| < 7. Thus no matter what value 6;
takes on

*(I%I*T)i)j

In the case where ; < —7, by similar reasoning we can also show P(|0;+c¢;| < 7) < exp <

—(16;] —7)3)

Ty = P(|Y;| < 1) = P(|0; + 0¢j| < 7) < exp ( L

_ _\2
Fact 1. For u > 0, there exists a constant Cy such that u® exp ( (ZU;)+) < O1(7% + 0?)

Proof Let u > 0. Note that by convexity of y — (y)2,

1 1 \2
U2:(U—T+T)3_:4<§(u_7_)+57_> SQ(’U,-T)%_+27'2
+

Thus
2 2

(2 — (1 — )2 —(ay —
u? exp ((u2027')+> <2(u — 7')2+ exp <(u2027')+> + 272 exp ((u2027)+)
2 2

<2 ( S%p v% exp (;)) + 272 exp <_(u2;27)+>
§4a2e_1 + 272
where the last inequality holds because we can show sup v? exp(%’;) = 202e! by taking the log
and taking derivatives and noting the expression is maq;(imized for v?2 = 20%. Letting C; = 3, we

(0 —+)2
have thus shown for u > 0, u? exp ( (ZU;)+) < C1(0? +712)

O]

Putting the previous results together and using the above fact we have that for any j € .S,

—(10;1 = 7)

2
E[(0; — 0;)*] < 0® + Ty < 0* + |0;]* exp ( = +> <o? 4 Ci(o? +17)

2



Now for j ¢ S note

B[(0; — 0,)") =B loe;*1(1e;| = 0]

S\/E [0’46;1»:| P<|6j\ > Z) (by Cauchy Schwartz )
o
=v/302 P(|ej| > I) (Using 4th moment of a Gaussian)
o
2
<V30%/2exp (2 5 ) (since €; is 1-sub-Gaussian)
2
=602 exp (4 2)

Thus the complete I risk (MSE) for hard thresholding is bounded above by

E[6—0[[31 =Y E[(6; — 0;)*]+ > _ E[(6; — 6;)°]

JES jJES*C
§Z(02—|—Cl(02—|—7 ) Z\fa exp(j)
j€S j¢se

7_2
<o?|S| + C1]S|(0% + 72) + C1|S¢|o exp(4 2)

2
<ko? + Clk(TQ + 02) + Cino? exp (4—7-2)
o

Thus we have an upper bound on EJ||6 — 6]|2] when 6 is a hard thresholding estimator with
7 > 0. This upper bound can be used to immediately prove the following theorem.

Theorem 2. Let 0 be a hard thresholding estimator with T = 20 /log(%). Then

sup E([0 - 013] < Cho® (1 +log(%))
16ll0<k k

for some numerical constant C' < oo

Proof Letting 7 = 20/log(%), simply plug this value into the derived inequality that
. 2
E[)|6 - 0] < ko® + CLk(72 + 02) + Cino? exp (F)
o

and note that the above inequality holds for any 6 such that ||0]|o < k. O

Note: This hard thresholding estimator with 7 = 20/log(%) is unimprovable and minimax
optimal.

3 Soft Thresholding for Gaussian Sequence Model

Idea: Instead of just chopping of observations in Y, let’s shrink them.



Definition 3.1. Define the soft thresholding operator to be given by

. (1
Sa(v) = sgn(v)(jv] = N+ = argg;m{i(u - )2+ )\\u|}

()

Figure 1: A plot of 5;(v)

Definition 3.2. Define the soft thresholding estimator to be given by

0

e
Sa(¥) = avgmin{ S [u— Y3 + Allulls |
u€R2

Theorem 3. Ifé is a soft thresholding estimator for the Gaussian Sequence Model, the choice
A = /202log(}) yields E[||0 — 0]|3] < Cko*(1+log()) if 0 is k-sparse. (For sharp constants, see
Johnstone 2108 monograph )

Proof
For 0; = 0,

E[(6; — 6;)%] =E[(ole;| — N3]
:/0 P((olej] = 2% > a)da
</0 P(ayej| > \/&)da
=2 /Oo(t — A)P(olej| > t)dt (letting t = Va + \)
A

§2/ tP(olej| > t)dt
A

00 —t2
§4/)\ t exp (ﬁ)dt (since oe; ~ N(0,0?))

_t2 t=o00
= —dotexn (53|
o P 202/ lt=x
2

-\
=10 exp (55 )



While for 6; # 0, since S} is 1-Lipschitz,

El(6; — 0;)%) = [(9 — 5\ (6;) + S\ (0;) — 9,»)2}

ng[ b; — Sx(6 } +2(SA(0;) — 0;)? (since (a + b)? < 2a2 + 2b°)
=2B[(S3(5) = Sx(0))?] + 2(S:(6) - 6,)?

§2E{ } + 2)2 (since Sy is 1 -Lipschitz)
=207 4 2)\?

Thus combining these two cases and using our choice A = /20%log(%), we get

A —\2
_ o121 < 2 2 2
B[]0 — 0]|2] <2k(0® + \2) + 4no exp(202)
_ 2 2 n 2
—2k<0 + 20 log(k)) + 4ko
=Cko®(1 + log(%))

for some constant C' < oo. O

4 Sparse Solutions to Linear Equations

Suppose we have observations Y given by Y = X6, where X € R"*?¢ d > n.
Hope : If 0 is structured (i.e. sparse), it can hopefully be recovered.

Example 1: : (Signal Processing) Consider an example with observation points ¢, ta, ..., t, and
frequencies w1, ws, ..., wq and a matrix X € R"*? given by

cos(wity) cos(wat1) ... cos(wgtr)
¥ cos(wity) cos(wata) ... cos(wgte)
cos(wity) cos(waty) ... cos(wgty)

Our observation Y = X6 will be the observation of superpositions of sinusoids at times t1, to, ..., t,.
d
Note that for a true continuous signal, Y'(t) = > 6;cos(w;t). If ||0]|o < n, maybe it is possible to
j=1
recover 6. &
Idea: Find the sparsest solution to Y = X6. This is equivalent to solving the optimization

problem
minimize  ||6]]o

subject to Y = X6

The problem is that this optimization problem is computationally intractable. One possible solution
to this issue is to replace || - ||o with a convex approximation such as || - ||1.



Definition 4.1. The basis pursuit linear program (Chen, Donoho, Saunders 1998) is the
following optimization problem
minimize ||0]]1

subject to 'Y = X0

Question: If 6* minimizes ||0]|op subject to Y = X6, does the basis pursuit linear program
recover 6*7

Answer: Sometimes it works. In figure 2a and figure 2b, the diamonds are [; balls, and 6* lies on
the corner of an [y ball to indicate it is sparse. Whether or not the the basis pursuit linear program
recovers 6* depends on the null space of the matrix X, because the output to the basis pursuit
linear program will find the minimizer of the /; norm in the affine subspace 0* + null(X). Thus
figure 2a represents the cases in which the basis pursuit linear program will succeed in recovering

0*, while figure 2b represents the cases in which the basis pursuit linear program will fail to recover
0*.
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We will formalize this with some definitions and a theorm.

Definition 4.2. For a set S C {1,...,d} the critical cone is the subset of R? given by
C(s)={AeR? : ||Aagelh < l|Aslh }

Definition 4.3. A matriz X is said to satisfy the restricted null spaces property with respect
to S if
Null(X)NC(S) = {0}

where Null(X) = {A ceRY : XA = 0}

Intuition: If S is the support of 8* (i.e. S ={j : 6; # 0}) and X satisfies the restricted
null spaces property (w.r.t. S) moving from 6* along null(X) increases the /; norm. Figure 2a
corresponds to the case where X satisfies restricted null spaces property with respect to S, where
S is the support of 6*.

Theorem 4. The following two statements are equivalent:

(1) X satisfies the restricted null spaces property with respect to S
(2) For any 0" such that supp0* =S and Y = X6%,0 is the unique solution to basis pursuit linear program



Proof To show (1) = (2), assume (1) holds and let § be a solution to the basis pursuit linear
program and let §* satisfy supp8* = S and Y = X0*. Now define A so that 6 = 0* + A. We will
show that A € Null(X) N C(S) and hence by (1), A = 0. To show this first note that

105112 =107
>110]]1 (since 0 minimizes ||A]]; subject to Y = X6)
=[16" + Al
=05 + As||1 + ||Ase| 1 (by decomposition of /1-norm)
>1605]11 — ||As|]1 + ||Ase]r (by the triangle inequality)

Adding ||As||1 — [|6%]]1 to each side we get ||Age||; < ||As||1, and thus A € C(S).
To show A € Null(X) note that Y = X6* and also Y = X6. Thus
0=Y -Y =X(0-0)=XA= A e Nul(X)

Thus since A € Null(X) N C(S), and since by (1), Null(X) N C(S) = {0} , we have that
A = 0. Thus 6 = 6. Hence if (1) holds then for any 6* such that suppf* = SandY =
X60*,0* is the unique solution to basis pursuit linear program.

Showing that (2) = (1) will be an exercise left to the reader.



