
Stats 300b: Theory of Statistics Winter 2018-2019

Lecture 19 – March 11

Lecturer: John Duchi Scribe: John Sholar

� Warning: these notes may contain factual errors

Announcements: The take-home final exam is 10 AM - 10 AM, Sunday - Monday or Monday
- Tuesday. You may use all available resources (textbooks, problem sets, problem set solutions,
online materials), but you may not collaborate with any other students.

Reading: HDP 3.1 and 9.1

Outline: Random vectors, concentration of norms, sub-Gaussianity of matrix processes

1 Recap

Theorem 1 (Generic Chaining). If (Xt)t∈T and (Yt)t∈T are processes and Yt is Gaussian and
‖Xt −Xs‖ψ2 ≤ σ‖Yt − Ys‖L2 = σE[(Yt − Ys)2]1/2 then

E
[
sup
t∈T
|Xt −Xt0 |

]
≤ CσE

[
sup
t∈T
|Yt − Yt0 |

]
.

Equivalently,

P
(

sup
t∈T
|Xt −Xt0 ≥ CσE

[
sup
t∈T
|Yt − Yt0 |

]
(1 + δ)

)
≤ exp(−δ2).

Morally, any time you can upper bound the ψ2-norm of your process by the L2 norm of a Gaussian
process, you can control expected suprema of X by controlling the expected suprema of the Gaussian.
Said differently, if Xt has sub-Gaussian increments, it is very well-controlled by a Gaussian process.

Today, we will use the ideas presented in theorem 1 to argue that random design matrices are
well-conditioned (e.g. satisfy restricted strong convexity). In particular, we will study the process
‖Xθ‖2 −

√
n‖θ‖2

2 Starting point: norms of random vectors

Question: How does the `2-norm ‖X‖2 concentrate for X ∈ Rn? Remarkably, we will see that
this concentration is dimension free (i.e. not dependent on n).
We now state a useful theorem, which we will use throughout this lecture.

Theorem 2. Let X = (X1, . . . , Xn) ∈ Rn have indepent1 σ2-sub-Gaussian entries. Assume
E[X2

i ] = 1, ‖Xi‖ψ2 ≤ σ. Then ∥∥‖X‖2 −√n∥∥ψ2
≤ Cσ2.

That is, for all λ ∈ R
E [exp (λ (‖X‖2 − E[‖X‖2]))] ≤ exp

(
λ2σ2C1

)
1John made a big show of not correcting “indepent” to “independent”, so we’ve faithfully reproduced this here.
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Proof Consider ‖X‖22 =
∑n

i=1X
2
i , which is an IID sum. From the homework we have that

‖X2
i − 1‖ψ1 ≤ 2‖X2

i ‖ψ1 ≤ 2‖Xi‖2ψ2
= 2σ2. From the Bernstein-type inequalities we have

P

(∣∣∣∣∣
n∑
i=1

(X2
i − 1)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cmin

{
t2

nσ4
,
t

σ2

})
As 2σ2 ≥ maxi ‖X2

i − 1‖ψ1 . Equivalently,

P
(∣∣∣∣ 1n‖X‖22 − 1

∣∣∣∣ ≥ t) ≤ 2 exp

(
−cnmin

{
t2

σ4
,
t

σ2

})
≤ 2 exp

(
−cn
σ4

min
{
t2, t

})
as σ2 ≥ E[X2

i ] = 1. It is a True FactTM that |Z − 1| ≥ δ implies that |Z2 − 1| ≥ max δ, δ2, because√
· is contractive toward 1. Applying this, we have

P
(∣∣∣∣ 1√

n
‖X‖2 − 1

∣∣∣∣ ≥ t) ≤ P
(∣∣∣∣ 1n‖X‖22 − 1

∣∣∣∣ ≥ max{t, t2}
)

≤ 2 exp
(
−cn
σ4
t2
)

Equivalently,

P
(∣∣‖X‖2 −√n∣∣ ≥ t) ≤ 2 exp

(
−ct

2

σ4

)
Which is what we wanted to show.

Morally, what we have shown in theorem 2 is that `2-norms of vectors with independent sub-
Gaussian entries have dimension-independent sub-Gaussian tails.

3 Main question

Our main focus for this lecture will be how we can control {‖Xθ‖2 −
√
n‖θ‖2}θ∈Θ, where X ∈ Rn×d

has rows XT
1 , . . . , X

T
n .

3.1 Definitions

Definition 3.1. A mean-zero vector Xi ∈ Rd is σ2-sub-Gaussian if

‖Xi‖ψ2 := sup
u : ‖u‖2≤1

‖〈Xi, u〉‖ψ2 ≤ σ

Equivalently (up to some numerical constant), for all v ∈ Rd

E[exp(〈Xi, v〉)] ≤ exp

(
σ2‖v‖22

2

)
Definition 3.2. Xi is isotropic if E[XiX

T
i ] = I

For now, we will consider only isotropic vectors, but our argument extends to non-isotropic vectors
with some messy eigenvalue and condition number arguments that we wish to avoid.
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3.2 Main theorem

The proof of the main theorem for this lecture (which we actually stated and derived corollaries
for, but did not prove, last Thursday) is quite long, so we’ve broken it into sub-parts.

Theorem 3. let X ∈ Rn×d have independent, isotropic, σ2-sub-Gaussian rows (XT
1 , . . . , X

T
n ).

Now, define the process Zθ := ‖Xθ‖2 −
√
nθ. Then, Zθ is Cσ4-sub-Gaussian for the `2-norm, i.e.

‖Zθ − Zt‖ψ2 ≤ Cσ2‖θ − t‖

where C is independent of the sample size n and dimension d.

Proof This proof is broken down into three cases, which we enumerate in theorems 4, 5, and 6
(though effectively theorem 6 proves this theorem in the most general case, and leans on theorems
4 and 5). Morally, if I give you a random matrix with independent, isotropic, sub-Gaussian rows,
its increments are sub-Gaussian with a constant. From this, things like restricted strong convexity
immediately pop out.

Theorem 4. Theorem 3 holds for t = 0, ‖θ‖2 = 1

Proof In this case, note that Xθ is the vector (XT
1 θ, . . . , X

T
n θ), which has n independent σ2-

sub-Gaussian entries. From theorem 2, we have that

‖Zθ − Zt‖ψ2 = ‖Zθ‖ψ2 = ‖‖Xθ‖2 −
√
n‖ψ2 ≤ Cσ2 = Cσ2‖θ − t‖2

Theorem 5. Theorem 3 holds for ‖θ‖2 = ‖t‖2 = 1

Proof We break the proof of this theorem down into two cases: ε ≤ 4
√
n

3 and ε ≥ 4
√
n

3 . We
address case 1 in lemma 7 and case 2 in lemma 8

Theorem 6. Theorem 3 holds for ‖θ‖2, ‖t‖2 > 0

Proof Because we can normalize by min {‖θ‖2, ‖t‖2} > 0, we assume WLOG that ‖θ‖2 = 1,
‖t‖ ≥ 1.
Now, let t = t

‖t‖2 . From theorem 5 we have because ‖t‖2 = 1,

‖Zθ − Zt‖ψ2 ≤ cσ2‖θ − t‖2 (1)

Now, using the fact that
∥∥∥ u
‖u‖2 − u

∥∥∥
2

= (‖u‖2 − 1) for any u, we have from theorem 2 that

‖Zt − Zt‖ψ2 = ‖‖Xt‖2 −
√
n‖t‖2 − (‖Xt‖2 −

√
n‖t‖2)‖ψ2

= (‖t‖2 − 1)‖zt‖ψ2

≤ (‖t‖2 − 1)cσ2

(2)
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Then, for Zθ = ‖Xθ‖2 −
√
n‖θ‖2, combining equations 1 and 2 with the triangle inequality yields

‖Zθ − Zt‖ψ2 = ‖Zθ − Zt + Zt − Zt‖ψ2

≤ ‖Zθ − Zt‖ψ2 + ‖Zt − Zt‖ψ2

≤ cσ2‖θ − t‖2 + cσ2(‖t‖2 − 1)

= cσ2(‖θ − t‖2 + ‖t− t‖2)

But this isn’t quite the result we need, because the triangle inequality goes the wrong way. We
need a slightly different bound. From lemma 10 we have ‖Zθ − Zt‖ψ2 ≤ Cσ2‖θ − t‖2.

3.3 Supporting lemmata for the main theorem

Lemma 7. For ε ≤ 4
√
n

3 we have

P
(∣∣∣∣‖Xθ‖2 − ‖Xt‖2‖t− θ‖2

∣∣∣∣ ≥ ε) ≤ exp

(
−cε

2

σ4

)
Proof Using the fact that a2 − b2 = (a− b)(a+ b), we have

P
(∣∣∣∣‖Xθ‖2 − ‖Xt‖2‖t− θ‖2

∣∣∣∣ ≥ ε) = P
(∣∣∣∣‖Xθ‖22 − ‖Xt‖22‖t− θ‖2

∣∣∣∣ ≥ ε(‖Xθ‖2 + ‖Xt‖2)

)
=: P(A)

Note that in order for event A to occur, one of two events has to occur

1. ‖Xθ‖2 ≤ 3
√
n/4 (the right hand side is small)

2. ‖Xθ‖2 ≥ 3
√
n/4 but

∣∣∣‖Xθ‖22−‖Xt‖22‖θ−t‖2

∣∣∣ ≥ 3ε
√
n

4

From theorem 2 we have that the probability of event (1) is bounded by

P((1) occurs) = P
(
‖Xθ‖2 ≤ 3

√
n/4

)
= P

(
‖Xθ‖2 ≤

√
n−
√
n

4

)
≤ exp

(
−cn
σ4

)
≤ exp

(
−cε

2

σ4

)
From lemma 9 we have that the probability of event (2) is bounded by

P((2) occurs) ≤ P
(∣∣∣∣‖Xθ‖22 − ‖Xt‖22‖θ − t‖2

∣∣∣∣ ≥ 3ε
√
n

4

)
≤ exp

(
−cε

2

σ4

)
Thus, the theorem holds in the case that ε ≤ 4

√
n

3

Lemma 8. For ε ≥ 4
√
n

3 we have

P
(∣∣∣∣‖Xθ‖2 − ‖Xt‖2‖t− θ‖2

∣∣∣∣ ≥ ε) ≤ exp

(
−cε

2

σ4

)
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Proof Observe that from the triangle inequality we have

|Zθ − Zt| = |‖Xθ‖2 − ‖Xt‖2| ≤ ‖X(θ − t)‖2

By theorem 2 we have

P
(
|Zθ − Zt|
‖θ − t‖2

≥ ε
)
≤ P

(
‖X(θ − t)‖2
‖θ − t‖2

≥ ε
)

= P
(
‖X(θ − t)‖2
‖θ − t‖2

≥
√
n+ (ε−

√
n)

)
≤ 2 exp

(
−c(ε−

√
n)2

σ4

)
≤ 2 exp

(
−cε

2

σ4

)
Where the last line follows from the fact that (eps−

√
n) ≥ ε/3.

Lemma 9. For ε ≥ 3
√
n/4 we have

P
(∣∣∣∣‖Xθ‖22 − ‖Xt‖22‖t− θ‖2

∣∣∣∣ ≥ δ) ≤ 2 exp

(
−cε

2

σ4

)
Proof Note that

‖Xθ‖22 − ‖Xt‖22
‖t− θ‖2

=
〈X(θ − t), X(θ + t)〉

‖θ − t‖2
= 〈Xu,Xv〉 =

n∑
i=1

〈Xi, u〉 〈Xi, v〉

where

u =
θ − t
‖θ − t‖2

, v = θ + 2, ‖u‖21, ‖v‖2 ≤ 2.

We have from exercise 6.7 (a) that ‖ 〈Xi, u〉 〈Xi, v〉 ‖ψ1 ≤ ‖ 〈Xi, u〉 ‖ψ2‖ 〈Xi, v〉 ‖ψ2 ≤ 2σ2. We also
have from the assumption that the rows of X are isotropic that

E [〈Xi, u〉 〈Xi, v〉] =
1

‖θ − t‖2
E
[
(XT

i θ)
2 − (XT

i t)
2
]

= 0

That is

E
[
‖Xθ‖22 − ‖Xt‖22
‖t− θ‖2

]
= 0

That is, this is a sum of mean-zero sub-exponential random variables. By the Bernstein-type
bounds and subsequently taking δ 7→

√
n we have

P

(∣∣∣∣∣
n∑
i=1

〈Xi, u〉 〈Xi, v〉

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
−cmin

{
δ2

nσ4
,
δ

σ2

})
≤ 2 exp

(
−cmin

{
1

σ4
,

√
n

σ2

})
≤ 2 exp

(
−cε

2

σ4

)
if ε ≤

√
nσ2
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Equivalently, for ε ≤
√
nσ2, or sufficiently ε ≤

√
n, we have

P
(∣∣∣∣‖Xθ‖22 − ‖Xt‖22‖t− θ‖2

∣∣∣∣ ≥ ε) ≤ 2 exp

(
−cε

2

σ4

)
which was to be shown.

Lemma 10. For θ, t, t as defined in theorem 6 we have ‖θ − t‖2 + ‖t− t‖2 ≤ 2‖θ − t‖2

Proof As t is a projection of t onto the unit ball, we have
〈
θ − t, t− t

〉
≤ 0. We prove this by

picture in figure 3.3. Equivalently we have (1/2)‖t − t‖22 + (1/2)‖θ − t‖22 − (1/2)‖θ − t‖22 ≤ 0. So
‖θ−t‖22+‖t−t‖22 ≤ ‖θ−t‖22. Using (a+b) ≤ 2

√
a2 + b2 we finally have ‖θ−t‖2+‖t−t‖2 ≤ 2‖θ−t‖2.
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