Basics of Concentration Inequalities

John Duchi

Stats 300b – Winter Quarter 2021
Outline

- Sub-Gaussian and sub-exponential random variables
- Symmetrization
- Applications to uniform laws
- Azuma-Hoeffding inequalities
- Doob martingales and bounded differences inequality

Reading: (this is more than sufficient)

- Wainwright, *High Dimensional Statistics*, Chapters 2.1–2.2
Concentration inequalities

Inequalities of the form

$$\mathbb{P}(X \geq t) \leq \phi(t)$$

where ϕ goes to zero (quickly) as $t \to \infty$

often, want to deal with sums, so instead (e.g.)

$$\mathbb{P}(\overline{X}_n \geq t) \leq \phi_n(t)$$

- underpin many ULLNs
- key in high-dimensional statistics (concentration of measure)
The familiar Markov bounds

Proposition (Markov’s inequality)

If $X \geq 0$, then $\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}$ for all $t \geq 0$.

Proposition (Chebyshev’s inequality)

For any $t \geq 0$, $\mathbb{P}(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{Var}(X)}{t^2}$
Sub-gaussian random variables

A mean-zero random variable X is σ^2-sub-Gaussian if

$$\mathbb{E}[\exp(\lambda X)] \leq \exp\left(\frac{\lambda^2\sigma^2}{2}\right) \quad \text{for all } \lambda \in \mathbb{R}.$$

(many equivalent definitions; see Vershynin or exercises)

Example

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] =$$

Example

If $X \in [a, b]$, then

$$\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] \leq \exp\left(\frac{\lambda^2(b - a)^2}{8}\right).$$
Tensorization identities

▶ variance inequality familiar: if X_i are independent,

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i)$$

Proposition

If X_i are independent and σ_i^2-sub-Gaussian, then $\sum_{i=1}^{n} X_i$ is $\sum_{i=1}^{n} \sigma_i^2$ sub-Gaussian.
Chernoff and Hoeffding Inequalities

Corollary (Chernoff bounds for sub-Gaussian random variables)

Let \(X \) be \(\sigma^2 \)-sub-Gaussian. Then

\[
P \left(X - \mathbb{E}[X] \geq t \right) \leq \exp \left(- \frac{t^2}{2\sigma^2} \right).
\]

Corollary (Hoeffding bounds)

If \(X_i \) are independent \(\sigma_i^2 \)-sub-Gaussian random variables,

\[
P \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \geq t \right) \leq \exp \left(- \frac{nt^2}{2 \sum_{i=1}^{n} \sigma_i^2} \right).
\]

▶ usually stated as \(X_i \in [a, b] \), so bound is \(\exp(-\frac{2nt^2}{(b-a)^2}) \)
Maxima of sub-Gaussian random variables

often want to control deviations of maximum (supremum in ULLNs)

Proposition

Let $\{Z_i\}_{i=1}^N$ be σ^2-sub-Gaussian (not necessarily independent). Then

$$\mathbb{E}\left[\max_i Z_i \right] \leq \sqrt{2\sigma^2 \log N}. $$
Sub-exponential random variables

- more nuanced control if variance small, or sub-gaussian parameter unavailable

Definition (Sub-exponential)
A random variable X is (τ^2, b)-sub-exponential if

$$\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] \leq \exp\left(\frac{\lambda^2 \tau^2}{2}\right) \text{ for } |\lambda| \leq \frac{1}{b}$$

Proposition (Tail bounds for sub-exponentials)
If X is (τ^2, b)-sub-exponential, then

$$\mathbb{P}(|X - \mathbb{E}[X]| \geq t) \leq 2 \exp\left(-\min\left\{\frac{t^2}{2\tau^2}, \frac{t}{b}\right\}\right)$$
Example (Bounded random variables)
If $X \in [-b, b]$, $\mathbb{E}[X] = 0$, and $\text{Var}(X) = \sigma^2$, X is $(2\sigma^2, b)$-sub-exponential.

▶ see also Vershynin, Ch. 2
Tensorization

Proposition (Tensorization)

Let X_i be independent (τ_i^2, b_i)-sub-exponential. Then $\sum_{i=1}^n X_i$ is $(\sum_{i=1}^n \tau_i^2, \max_{i \leq n} b_i)$-sub-exponential.

Corollary (Bernstein-type bounds)

If $|X_i| \leq b$ and $\text{Var}(X_i) \leq \sigma^2$, then

$$
P(|\bar{X}_n - \mathbb{E}[\bar{X}_n]| \geq t) \leq 2 \exp \left(-c \min \left\{ \frac{nt^2}{\sigma^2}, \frac{nt}{b} \right\} \right) \quad \text{for } t \geq 0.
$$
Symmetrization

- important idea in uniform laws of large numbers and concentration
- Banach space theory (surprisingly) develops many of these ideas

motivation: for ULLNs, Markov’s inequality gives

\[
P \left(\sup_{f \in \mathcal{F}} (P_n - P)f \geq t \right) \leq \frac{\mathbb{E}[\sup_{f \in \mathcal{F}} (P_n - P)f]}{t}
\]

sometimes if \(P_n - P \) is symmetric, it’s easier to deal with
Symmetrization in a vector space

- X_i are arbitrary vectors in a normed space with norm $\| \cdot \|$.
- $\varepsilon_i \in \{ \pm 1 \}$ are i.i.d. uniform signs (Rademacher variables).

Theorem

Let $F : \mathbb{R}_+ \to \mathbb{R}_+$ be convex, increasing, and X_i be independent. Then

$$
\mathbb{E} \left[F \left(\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\| \right) \right] \leq \mathbb{E} \left[F \left(2 \left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\| \right) \right].
$$
Corollary

If $\mathbb{E}[X_i] = 0$, for any norm $\| \cdot \|$ and $p \geq 1$, we have

$$\mathbb{E} \left[\left\| \sum_{i=1}^{n} X_i \right\|^p \right] \leq 2^p \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\|^p \right]$$
Consequences

- treat measures as vectors (linear mappings from \mathcal{F} to \mathbb{R})
- norm $||\mu||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\int fd\mu|$
- (ignore measurability, completeness, etc.)

Corollary

Let P_n^0 be shorthand for random measure

$$P_n^0 f := \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i).$$

Then

$$\mathbb{E} [||P_n - P||_{\mathcal{F}}^p] \leq 2^p \mathbb{E} [||P_n^0||_{\mathcal{F}}^p].$$
Uses of symmetrization

- often easier to deal with symmetric random variables
- can give (much) more precise bounds on these quantities
- easy proofs of ULLNs
- quantity $\sum_{i=1}^{n} \varepsilon_i X_i$ is $\sum_{i=1}^{n} X_i^2$-sub-Gaussian (conditional on X_is)
Rademacher complexities

Definition
The empirical Rademacher complexity of a class \(\mathcal{F} \) is

\[
R_n(\mathcal{F} \mid X_1^n) := \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} \varepsilon_i f(X_i) \right| \mid X_1^n \right] = n\mathbb{E} \left[\|P_0^n\|_{\mathcal{F}} \mid X_1^n \right].
\]

The Rademacher complexity is \(R_n(\mathcal{F}) := \mathbb{E}[R_n(\mathcal{F} \mid X_1^n)] \).

Corollary

\[
\mathbb{P} \left(\sup_{f \in \mathcal{F}} |P_n f - Pf| \geq t \right) \leq \frac{2}{nt} R_n(\mathcal{F}),
\]

so if \(R_n(\mathcal{F}) = o(n) \) then \(\|P_n - P\|_{\mathcal{F}} \xrightarrow{p} 0 \).
Metric entropies and symmetrization give a ULLN

- typical to have an *envelope function*, i.e. if $\mathcal{F} \subset \{ \mathcal{X} \to \mathbb{R} \}$ there exists F such that
 \[|f(x)| \leq F(x) \text{ for all } f \in \mathcal{F} \text{ and } PF < \infty \]

- Define truncated class for $M \in \mathbb{R}_+$ by
 \[f_M(x) := \begin{cases} f(x) & \text{if } |f(x)| \leq M \\ 0 & \text{otherwise} \end{cases} \]
 and $\mathcal{F}_M := \{ f_M : f \in \mathcal{F} \}$

Theorem

*Let \mathcal{F} have envelope $F \in L^1(P)$. If $\log N(\mathcal{F}_M, L^1(P_n), \epsilon) = o(n)$ for all $M < \infty$ and $\epsilon > 0$, then $\| P_n - P \|_{\mathcal{F}} \xrightarrow{P} 0$.***
Proof of ULLN

Lemma (Metric entropies bound Rademacher complexity)

For any class of functions $\mathcal{G} \subset \{ \mathcal{X} \to \mathbb{R} \}$, for

$$\sigma_n^2 = \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} g(X_i)^2$$

we have

$$R_n(\mathcal{G} \mid X_1^n) \lesssim \sqrt{n\sigma_n^2 \log N(\mathcal{G}, L^1(P_n), \epsilon)} + \epsilon.$$
Examples:

Example (Lipschitz functions)

If \mathcal{F} is the collection of 1-Lipschitz functions on $[0, 1]$ with $f(0) = 0$, then

$$\log N(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \asymp \frac{1}{\epsilon}$$

and

$$\mathbb{E} \left[\| P_n^0 f \|_{\mathcal{F}} \right] \lesssim \epsilon + \frac{1}{\sqrt{n \epsilon}}$$
Revisiting concentration

goal: often we’d like to show concentration of more complex objects than averages, e.g.

\[
\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(X_i)
\]

major tool: martingales
Martingales

Definition (Non-measure theoretic version)

Let X_1, X_2, \ldots be a sequence of random variables and Z_1, Z_2, \ldots be another, where X_i and Z_{i-1} are functions of Z_i. Then X_i is a martingale difference sequence adapted to Z_i if

$$\mathbb{E}[X_i \mid Z_{i-1}] = 0 \text{ for all } i,$$

and $M_n := \sum_{i=1}^{n} X_i$ is the associated martingale

(converse definition: given M_n such that $\mathbb{E}[M_n \mid Z_{n-1}] = M_{n-1}$ and M_n is a function of Z_n, $X_n = M_n - M_{n-1}$ is the difference sequence)
A martingale difference sequence \(\{X_i\} \) is \(\sigma^2 \)-sub-Gaussian if

\[
\mathbb{E}[\exp(\lambda X_i) \mid Z_{i-1}] \leq \exp \left(\frac{\lambda^2 \sigma^2}{2} \right) \quad \text{for all } i, Z_1^{i-1}.
\]

Theorem (Azuma-Hoeffding)

Let \(X_i \) be \(\sigma^2_i \)-sub-Gaussian martingale differences. Then for \(t \geq 0 \),

\[
P \left(\sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(- \frac{t^2}{2 \sum_{i=1}^{n} \sigma_i^2} \right).
\]
Doob martingales and functions of independent variables

- $X_i \in \mathcal{X}$ are independent random variables
- $f : \mathcal{X}^n \to \mathbb{R}$
- to control $f(X_1^n) - \mathbb{E}[f(X_1^n)]$ construct Doob martingale

construction: set $Z_i = \{X_1^{i-1}\}$ and define differences

$$D_i := \mathbb{E}[f(X_1^n) \mid Z_i] - \mathbb{E}[f(X_1^n) \mid Z_{i-1}],$$

so

$$\sum_{i=1}^n D_i = f(X_1^n) - \mathbb{E}[f(X_1^n)]$$

observation: D_i are martingale differences adapted to Z_i
Bounded differences (McDiarmid’s) inequality

Theorem (Bounded differences)

Let \(f : \mathcal{X}^n \rightarrow \mathbb{R} \) satisfy \(c_i \)-bounded differences,

\[
|f(x_i^{i-1}, x_i, x_i^n) - f(x_i^{i-1}, x'_i, x_i^n)| \leq c_i \quad \text{all } x, x' \in \mathcal{X}^n.
\]

Then \(f - Pf \) is \(\frac{1}{4} \sum_{i=1}^{n} c_i^2 \)-sub-Gaussian.

Corollary

Let \(f : \mathcal{X}^n \rightarrow \mathbb{R} \) have \(c_i \)-bounded differences and \(X_i \) be independent. Then

\[
\mathbb{P}(f(X_1^n) - Pf \geq t) \leq \exp \left(-\frac{2t^2}{\sum_{i=1}^{n} c_i^2} \right) \quad \text{for } t \geq 0.
\]
Rademacher complexities and bounded differences

- the *empirical process* often satisfies bounded differences

Proposition

Let $\mathcal{F} \subset \{ \mathcal{X} \rightarrow \mathbb{R} \}$ satisfy $|f(x) - f(x')| \leq B$ for $x, x' \in \mathcal{X}$. Then

$$
\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf) \quad \text{and} \quad \|P_n - P\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf) \right|
$$

satisfy $\frac{B}{n}$ bounded differences.
Concentration of the empirical process

Corollary

Let $\mathcal{F} \subset \{\mathcal{X} \to \mathbb{R}\}$ satisfy $|f(x) - f(x')| \leq B$ for all $x, x' \in \mathcal{X}$. Then

$$
\mathbb{P} \left(\sup_{f \in \mathcal{F}} (P_n f - Pf) \geq \mathbb{E} \left[\sup_{f \in \mathcal{F}} (P_n f - Pf) \right] + t \right) \leq \exp \left(-\frac{2nt^2}{B^2} \right)
$$

$$
\mathbb{P} \left(\|P_n - P\|_{\mathcal{F}} \geq \mathbb{E} [\|P_n - P\|_{\mathcal{F}}] + t \right) \leq \exp \left(-\frac{2nt^2}{B^2} \right)
$$

for all $t \geq 0$.

Preview: by symmetrization,

$$
\mathbb{E} [\|P_n - P\|_{\mathcal{F}}] \leq 2 \mathbb{E} [\|P^0_n\|_{\mathcal{F}}] = 2 \frac{R_n(\mathcal{F})}{n},
$$

so controlling expectations evidently important